Report Customer
V. 4.0 Panoptic

Smart Contract Audit

Panoptic

26th April 2023 {\ ABDK

, Consulting

Contents

1 Changelog 8
2 Introduction 9
3 Project scope 10
4 Methodology 1
5 Ourfindings 12
6 Critical Issues 13
CVF-1. FIXED . . e e e e e e e e 13
CVF-2. FIXED . . . e e e e e 13
CVF-3. FIXED . . o e e e e e e e 13
CVF-4. FIXED . . o e e e e e e e e e e e e e 14
7 Major Issues 15
CVF-5. FIXED . . e e e 15
CVF-6. INFO e e e 15
CVF-12. FIXED e e e e e e e 16
CVF-14. FIXED . . o o o o e e e e e e e e e e e e e e e e e 16
CVF-15. FIXED . o o o e e e e e e e e e e e e 16
CVF-16. FIXED o e e e e e e e 17
CVF-17. FIXED e e e e e e e e e e e 17
CVF-20. FIXED . . . e e 17
CVF-21 FIXED . . . o o e e e e e e e e e e e e 18
CVF-22. FIXED . o o e e e e e e e e 19
CVF-24. FIXED . . e e e e e e 19
CVF-25. FIXED e e e e e e 20
CVF-26. FIXED 20
CVF-27. FIXED . . o o e e e e e e e e e 20
CVF-28. FIXED . . o e e 21
CVF-29. FIXED . . e e e 21
CVF-31 FIXED e e e e 21
CVF-32. FIXED e 22
CVF-33. FIXED . . . e 22
CVF-34. FIXED . . o e e e 22
CVF-36. FIXED . . o e 23
CVF-37. FIXED e e e e e e 23
CVF-38. FIXED e 23
CVF-39. FIXED e 24
CVF-40. FIXED . . . e e e e e e 24
CVF-42. FIXED . . o e e e e e e e 25

CVF-43. FIXED . . o 25

CVF-45. FIXED . o o 25

CVF-48. FIXED . . e e e 26
CVF-49. FIXED . . . e e 27
CVF-50. FIXED e e 28
CVF-51. FIXED . . . o e 28
Moderate Issues 29
CVE-9. INFO e e 29
CVF-10. INFO . . . e e e e e 29
CVF-T1L INFO . . o e e e e e e 30
CVF-18. FIXED . . . o o e e 30
CVF-19. INFO . . . e e e 31
CVE-23. INFO . . . e e 31
CVF-46. INFO . . . e e e e 32
CVF-47. FIXED . . . o e e e e 32
CVF-53. FIXED . . . e 33
CVF-54. INFO e e 33
CVE-55. FIXED . o o o e e 34
CVF-56. INFO e e 34
CVF-57. INFO . . . e e e 34
CVF-58. INFO e e 35
CVF-59. INFO e 35
CVE-60. FIXED . . . e e e 36
CVE-61. FIXED o e e 36
CVF-62. FIXED . . e e e 37
CVF-63. INFO . . . e e 37
CVF-64. FIXED . . . e e 38
CVF-65. FIXED e 38
CVE-66. INFO e e 39
CVF-67. FIXED . . . o e e e 39
CVF-68. INFO e e 40
CVF-69. INFO e e 40
CVF-70. INFO e e e 41
CVE-71. FIXED . . . o o e e 41
CVF-72. INFO . . . e e e 42
CVF-73. FIXED . . e e e 42
CVF-74. FIXED . . . o e e 43
CVF-75. INFO . . . e 43
CVE-76. INFO e e 44
CVF-77. INFO . . . e e e e e e 44
CVF-78. FIXED . . o e e e 45
CVF-79. INFO . . . e 45
CVF-80. INFO e 45
CVE-81. INFO . . . e e e 46
CVF-82. INFO e e 46

CVF-83.INFO 46

CVF-84.INFO 47

CVF-85. INFO e e e 47
CVF-86. INFO e 48
CVF-87. INFO e 48
CVF-88. INFO e e 48
CVF-89. INFO e e 49
CVF-90. INFO e e e e 49
CVF-91. INFO . . . e e e e 49
CVF-92. INFO e 50
CVF-93. INFO e e 50
CVF-94. FIXED e e 50
CVF-95. INFO e e 51
CVF-96. INFO e e e 51
CVF-97. INFO e e 52
CVF-98. INFO e e 53
CVF-99. FIXED e e 54
CVF-100. INFO e e e e e e 54
CVF-101. INFO . . . o e e e e e e e 55
CVF-102. FIXED . . . o o e e e e e e 56
CVF-103. FIXED o e e e 56
CVF-104. INFO e e e e e 56
CVF-105. FIXED . . . o o e 57
CVF-106. FIXED o e e e e e e e e e e 57
CVF-107. INFO o e e e e e e e e 57
CVF-108. INFO e e e 58
CVF-M1. FIXED . . o e e e e e e 58
Minor Issues 59
CVF-109. INFO e e e e e e 59
CVF-10. INFO e e e e e e e s 59
CVF-M8. INFO e e e e e e e e 60
CVF-1M9. FIXED e e e 60
CVF-130. FIXED o e e 60
CVF-131. FIXED . . o e e e e e 61
CVF-132. FIXED o e e e e e e 61
CVF-133. INFO . . o e e e e e e 61
CVF-134. INFO e e e e e e e 61
CVF-135. FIXED . . . o o e e e e e 62
CVF-136. INFO e e e 62
CVF-137. FIXED . . o e e e e 62
CVF-138. FIXED o e e e e e 63
CVF-139. FIXED o e e e e 63
CVF-140. INFO e e e e e e 63
CVF-T41. INFO o e e e e e e e e 64
CVF-142. INFO e e e s e e e 64

CVF-143. INFO 64

CVF-144. FIXED . . o o 65

CVF-145. FIXED . . o o 65
CVF-146. FIXED . . . o o 65
CVF-147. INFO e 66
CVF-148. FIXED . . o o 66
CVF-T49. INFO . . . 66
CVF-150. FIXED . . o o o 67
CVF-151. FIXED . o o o e 67
CVF-152. INFO . . . 67
CVF-153. INFO . . o 68
CVF-154. INFO . . . o 68
CVF-155. FIXED .« . . oo 68
CVF-156. FIXED . . o o o 69
CVF-157. FIXED . o o o 69
CVF-158. FIXED . . o o e 69
CVF-159. INFO . . . 70
CVF-160. FIXED . . . o o 70
CVF-161. INFO . . . o o 70
CVF-162. INFO 71
CVF-163. FIXED . . o o 71
CVF-164. INFO 71
CVF-165. INFO . . . e 72
CVF-166. INFO 72
CVF-167. FIXED . . o 72
CVF-168. FIXED . . . o e 73
CVF-169. INFO . . . 73
CVF-170. FIXED . . o o 74
CVE-171. FIXED . o o 74
CVF-172. INFO . . . e 74
CVF-173. INFO . . . 75
CVF-174. FIXED . . o o e 75
CVF-175. INFO . . . 76
CVF-176. FIXED oo e 76
CVF-177. INFO . . . o e /6
CVF-178. FIXED . . o o 77
CVF-179. INFO . . . 77
CVF-180. INFO . . . 78
CVF-181. FIXED . . . oo 78
CVF-182. FIXED . . o o 79
CVF-183. FIXED . . o o 79
CVF-184. INFO 80
CVF-185. FIXED . . o o 80
CVF-186. FIXED . . . o o e 80
CVF-187. FIXED . o o o 81
CVF-188. FIXED . . o o o 82

CVF-189. FIXED . . . o e 83

CVF-190.
CVF-191.

CVF-192.
CVF-193.
CVF-194.
CVF-195.
CVF-196.
CVF-197.

CVF-198.
CVF-199.
CVF-200.
CVF-201.
CVF-202.
CVF-203.
CVF-204.
CVF-205.
CVF-206.
CVF-207.
CVF-208.
CVF-209.
CVF-210.
CVF-211.

CVF-212.
CVF-213.
CVF-214.
CVF-215.
CVF-216.
CVF-217.

CVF-218.
CVF-219.
CVF-220.
CVF-221.

CVF-222.
CVF-223.
CVF-224.
CVF-225.
CVF-226.
CVF-227.

CVF-228.
CVF-229.
CVF-230.
CVF-231.

CVF-232.
CVF-233.
CVF-234.
CVF-235.

FIXED . . o oo e 84
FIXED . o o 84
INFO . .. o 85
FIXED . o oo 85
INFO . . o e 86
FIXED . . o o oo e 86
FIXED oo oo o 86
FIXED . o o 87
FIXED . .o o oo oo e 87
INFO . . . 87
FIXED . . o o o e 88
FIXED . o oo 88
FIXED . o o o 88
FIXED . o o o 89
INFO . . 89
FIXED . . o oo e 89
INFO oo 90
FIXED . o o 90
FIXED . . . o oo oo 90
FIXED . o o o 91
INFO . . e 91
FIXED . . . oo e 91
FIXED . . oo 92
FIXED . o oo e 92
FIXED .« o oo e 93
INFO . . 93
FIXED . o o o e 94
FIXED oo oo 94
FIXED . oo e 94
FIXED .« o oo e 95
FIXED oo o 96
FIXED . . o oo e 96
INFO o 96
FIXEDo o oo 97
FIXED . . o o oo oo 97
FIXED . . o o oo oo 98
INFO . . . o 98
FIXED . o oo 99
FIXED . . o o oo oo 99
INFO . .. o 99
FIXED . o oo 100
INFO . . e 100
INFO . . . e 101
INFO . . 101
INFO . . 101

CVF-236.
CVF-237.
CVF-238.
CVF-239.
CVF-240.
CVF-241.
CVF-242.
CVF-243.
CVF-244.
CVF-245.
CVF-246.
CVF-247.
CVF-248.
CVF-249.
CVF-250.
CVF-251.
CVF-252.
CVF-253.
CVF-254.
CVF-255.
CVF-256.
CVF-257.
CVF-258.
CVF-259.
CVF-260.
CVF-261.
CVF-262.
CVF-263.
CVF-264.

INFO . .. 102

INFO . . 102
INFO . . 103
INFO . . 103
INFO . . . o 104
FIXED . . o o e 104
FIXED . . o o 104
INFO . . 105
FIXED . o oo 105
FIXED . . . o oo 105
INFO . . . 106
INFO . . 106
INFO o 107
FIXED . o o o 107
FIXED . . .o oo o 107
FIXED . . o oo e 108
FIXED . . o o e 108
FIXED oo oo o e 109
FIXEDo oo oo o e 109
FIXED . . o o oo oo 110
FIXED . . . oo e 110
FIXED . . o e e e e e 1M1
FIXED . . . o oo oo oo 1M1
FIXED oo oo oo e 112
FIXED . o o o 112
FIXED . . o e 113
FIXED . . o o o e 113
FIXED . . o oo e 114

1 Changelog

I K

0.2

1.0

11

1.2

1.3

1.4

1.5

1.6

2.0

21

2.2

3.0

3.1

4.0

ABDK

11.04.23

11.04.23

11.04.23

23.04.23

23.04.23

23.04.23

23.04.23

23.04.23

23.04.23

24.04.23

24.04.23

24.04.23

24.04.23

26.04.23

26.04.23

A.

A.

A.

Zveryanskaya
Zveryanskaya

Zveryanskaya

. Zveryanskaya

. Zveryanskaya

. Zveryanskaya

. Zveryanskaya

. Zveryanskaya

. Zveryanskaya

. Zveryanskaya

. Zveryanskaya

. Zveryanskaya

. Zveryanskaya

. Zveryanskaya

. Zveryanskaya

Initial Draft
Minor revision
Release

CVF-5, 6 are downgraded
to Major

CVF-7, 9, 10, 11, 18, 19,
23, 46 are downgraded to
Moderate

CVF-109, 110 are down-
graded to Minor

CVF-8, 13, 30, 35, 41, 44,
280-299 are removed

CVF-31, 39, 139, 160, 176,
190, 205 are marked as
Fixed

CVF-161 missed code block
is added

Release

CVF-53, 60, 61, 74, 119,
207, 214, 223 are marked as
Fixed

CVF-75, 106, 125, 165 typos
are fixed

Release

CVF-7, 52, 112-117, 120-
129, 264-279 are removed

Release

2 Introduction

The following document provides the result of the audit performed by ABDK Consulting
(Mikhail Vladimirov and Dmitry Khovratovich) at the customer request. The audit goal is
a general review of the smart contracts structure, critical/major bugs detection and
issuing the general recommendations.

Panoptic is a perpetual, oracle-free, instant-settlement options trading protocol on the
Ethereum blockchain. Panoptic enables the permissionless trading of options on top of
any asset pool in the Uniswap v3 ecosystem and seeks to develop a trustless,
permissionless, and composable options product, i.e., do for decentralized options
markets what x-y=k automated market maker protocols did for spot trading.

ABDK 9

3 Project scope

We were asked to review:
¢ Original Code

e Code with Fixes

Files:

/
CollateralTracker.sol PanopticFactory.sol
SemiFungiblePosition
Manager.sol

libraries/
Errors.sol FeesCalc.sol
LiquidityChunk.sol Math.sol
TickPriceFeelnfo.sol Tokenld.sol

uniswapv3_periphery/base/

PeripheryPayments.sol

ABDK

PanopticPool.sol

LeftRight.sol

PanopticMath.sol

10

https://github.com/panoptic-labs/Panoptic/tree/35fae0d80687fa8deb0a7c3531e112f4a0f00a4e
https://github.com/panoptic-labs/Panoptic/commit/f1b55d0f35ee946dae9908c82a07e37ab2a24407

4 Methodology

The methodology is not a strict formal procedure, but rather a selection of methods and
tactics combined differently and tuned for each particular project, depending on the
project structure and technologies used, as well as on client expectations from the audit.

» General Code Assessment. The code is reviewed for clarity, consistency, style,
and for whether it follows best code practices applicable to the particular
programming language used. We check indentation, naming convention,
commented code blocks, code duplication, confusing names, confusing, irrelevant,
or missing comments etc. At this phase we also understand overall code structure.

« Entity Usage Analysis. Usages of various entities defined in the code are
analysed. This includes both: internal usages from other parts of the code as well
as potential external usages. We check that entities are defined in proper places
as well as their visibility scopes and access levels are relevant. At this phase, we
understand overall system architecture and how different parts of the code are
related to each other.

e Access Control Analysis. For those entities, that could be accessed externally,
access control measures are analysed. We check that access control is relevant
and done properly. At this phase, we understand user roles and permissions, as
well as what assets the system ought to protect.

» Code Logic Analysis. The code logic of particular functions is analysed for
correctness and efficiency. We check if code actually does what it is supposed to
do, if that algorithms are optimal and correct, and if proper data types are used.
We also make sure that external libraries used in the code are up to date and
relevant to the tasks they solve in the code. At this phase we also understand
data structures used and the purposes they are used for.

We classify issues by the following severity levels:

o Critical issue directly affects the smart contract functionality and may cause a
significant loss.

» Majorissue is either a solid performance problem or a sign of misuse: a slight
code modification or environment change may lead to loss of funds or data.
Sometimes it is an abuse of unclear code behaviour which should be double
checked.

* Moderate issue is not an immediate problem, but rather suboptimal performance
in edge cases, an obviously bad code practice, or a situation where the code is
correct only in certain business flows.

» Minor issues contain code style, best practices and other recommendations.

ABDK 11

5 Our findings

We found 4 critical, 32 major, and a few less important issues. All identified Critical and
Major issues have been fixed or otherwise addressed in collaboration with the client.

Issues

Severity

Critical

. Active Fixed
Major 1 31
Active Fixed
Moderate a4 21
. Active Fixed
Minor 54 85
Fixed 141 out of 240 issues
ABDK 12

22

1169

171

614

6 Criticallssues

CVF-1. FIXED

+ Category Flaw * Source PeripheryPayments.sol

Recommendation This condition ignores the “payer” argument. Should include “&& payer
== address(this)”.

Client Comment We no longer use this library.

if (token == WETH9 && address(this).balance >= value) {

CVF-2. FIXED

+ Category Flaw » Source CollateralTracker.sol

Description Despite the comment, a negative swapped amount is actually replaced with
its absolute value rather than zero.

Client Comment Updated the logic as described by the code comment.

swappedAmount = swappedAmount < 0 ? -swappedAmount : swappedAmount;

CVF-3. FIXED

o Category Unclear behavior * Source
SemiFungiblePositionManager.sol

Description It seems the caller doesn’t use this information. It still uses the whole liquidity
chunk as if all the requested liquidity were available.

Client Comment This condition is now enforced here.

ABDK 13

CVF-4. FIXED

« Category Unclear behavior * Source
SemiFungiblePositionManager.sol

Description In case the starting liquidity is less than liquidity chunk liquidity, the liquidity
chunk amounts should be decreased accordingly.

Client Comment We decided to enforce this and have the function revert in this situation.
731 'uint256 liquidityChunk,

733 uint256 liquidities,

ABDK 14

401

7 Major Issues

CVF-5. FIXED

+ Category Flaw » Source Tokenld.sol

Description The "MAX_LEG_WIDTH”" special value for "self.width(legindex)” may cause
the range check above to fail.

Recommendation Consider performing the range check only after the special value
check.

Client Comment The range check was moved to the end.

(legLowerTick, legUpperTick) = self.width(legIndex) == MAX LEG WIDTH

CVF-6. INFO

» Category Flaw » Source LeftRight.sol

Description This logic cannot correctly handle negative "right” values. For exam-
ple: Input: self = 0x2 (0, 2), right = -1 Expected output: 0x1 (0, 1) Actual output:
0x100000000000000000000000000000001 (1, 1)

Client Comment This function is not intended to handle existing bits in the slot it’s writing
to. We have ‘add’ and ‘sub’ functions for this purpose.

94 return self + (int256(right) & RIGHT HALF BIT MASK);

ABDK 15

CVF-12. FIXED

+ Category Flaw * Source PanopticPool.sol

Description This code runs out of gas if the list is longer than 256 entries.
Recommendation Consider handling this situation explicitly.

Client Comment We have changed the type of the iterator to a uint256.

190 for (uint8 i; i < positionIdList.length;) {
balances[i] = getUserOptionsBalance(user, positionIdList[i]);
(_)

unchecked {
++1;

}

CVF-14. FIXED

o Category Suboptimal » Source PanopticPool.sol

Description The expression “mintTokenld.countLegs()” is calculated on every loop itera-
tion.

Recommendation Consider calculating once before the loop.

767 for (uint256 index = 0; index < mintTokenId.countLegs();) {

CVF-15. FIXED

o Category Suboptimal » Source PanopticPool.sol

Description The expression “burnTokenld.countLegs()” is calculated on every loop itera-
tion.

Recommendation Consider calculating once before the loop.

1010 for (uint256 i = 0; i < burnTokenId.countlLegs();) {

PN

ABDK 16

1376

1484

148

CVF-16. FIXED

« Category Unclear behavior + Source PanopticPool.sol

Description It is unclear what negative values for this argument mean.

Recommendation Consider either forbidding negative values or explaining their seman-
tics.

Client Comment We have changed the type to a uint to make clear that the argument
cannot be negative.

int128 requestedAmount

CVF-17. FIXED

o Category Unclear behavior » Source PanopticPool.sol

Description The comment tells about “administrating” while the error tells about “liqui-
dating” which is not the same. The function “_administrateAccount” is called not only
during liquidation, but also during forced exercising.

Recommendation Consider rephrasing the comment or moving this this check into the
calling functions.

Client Comment This check was removed altogether.

if (_msgSender() == account) revert Errors.CannotSelfLiquidate();

CVF-20. FIXED

+ Category Procedural + Source CollateralTracker.sol

Description Here the Uniswap pool address is implicitly passed to the collateral tracker.
Such implicit data flows are error prone and make code harder to read.

Recommendation Consider passing the Uniswap pool address via an explicit argument.

IUniswapV3Pool uniswapPool = IPanopticPool(msgSender()).univ3pool()
=

PN

ABDK 17

CVF-21. FIXED

+ Category Suboptimal + Source CollateralTracker.sol

Description The token addresses are queried by the Uniswap pool several times, which
is gas consuming.

Recommendation Consider querying once and reusing.

152 I'(underlyingAddress == uniswapPool.token0O() ||
underlyingAddress == uniswapPool.tokenl())

157 ' if ((uniswapPool.tokenO() == address(0)) || (uniswapPool.tokenl() ==
— address(0)))

168 s univ3token0
s _univ3tokenl

uniswapPool.token0O();
uniswapPool.tokenl();

172 's_underlyingIsToken® = address(underlyingAddress) == uniswapPool.
— token0O();

ABDK 18

228

230

235

CVF-22. FIXED

+ Category Suboptimal + Source CollateralTracker.sol

Description Here values are checked for validity after writing them to the storage. This
looks like waste of gas.

Recommendation Consider performing all validity checks before writing anything into the
storage.

Client Comment This whole section was refactored such that the parameters are put into
a struct and written without explicit, redundant checks.

((s_MAINTENANCE MARGIN RATIO = int256(intl6(uintl6(parameterData
—)))) <=0) []
((s_COMMISSION FEE MIN
— 16)))) <= 0) ||
((s_COMMISSION FEE MAX
— 32)))) <= 0) ||

((s COMMISSION START UTILIZATION = int128(intl6(uintl6(
< parameterData >> 48)))) <= 0) ||

((s_SELL COLLATERAL RATIO = intl128(intl6(uintl6(parameterData >>
— 64)))) <= 0) ||

((s_BUY COLLATERAL RATIO = intl128(intl6(uintl6(parameterData >>
— 80)))) <=0) []

int128(intl6(uintl6(parameterData >>

int128(intl6(uintl6(parameterData >>

((s_TARGET POOL UTILIZATION = int128(intl6(uintl6(parameterData
— >> 128)))) <= 0) ||

((s SATURATED POOL UTILIZATION = int128(intl6(uintl6(
— parameterData >> 144)))) <= 0)

240 if (s _EXERCISE COST >= 0) revert Errors.InvalidInputParameters();

CVF-24. FIXED

o Category Documentation * Source CollateralTracker.sol

Description There is no such logic in the function.

Client Comment The comment was clarified to reflect the current behavior.

282 * @dev Function that adds/removes amount from locked and inAMM

< storage, will lock all funds if there is <100 wei (dust
— threshold)

ABDK 19

CVF-25. FIXED

« Category Unclear behavior » Source CollateralTracker.sol

Description Here multiplication after division is performed.
Recommendation Consider dividing once at the end of calculation.

Client Comment We moved away from the MulDiv here and now perform all the multlipli-
cations first.

375 uint256 valueRatiol = FullMath.mulDiv(
FullMath.mulDiv(tokenData.rightSlot(), FixedPoint96.Q96,
— sqrtPriceX96),
DECIMALS,
tokenValue

CVF-26. FIXED
o Category Suboptimal + Source CollateralTracker.sol
Description The expression "tokenld.countLegs()” is calculated on every loop iteration.

472 for (uint256 index = 0; index < tokenId.countLegs();) {

CVF-27. FIXED

o Category Suboptimal ¢ Source CollateralTracker.sol

Description This check seems redundant.
Recommendation Consider removing it or explaining why it is necessary.

Client Comment We removed the check.

759 require(balanceOf(user) <= balanceBefore + shares);

ABDK 20

766

807

1237

1239

CVF-28. FIXED

« Category Unclear behavior » Source CollateralTracker.sol

Description The actual amount of shares burned by this function could be less than this
value.

Recommendation Consider returning the actual amount of shares burned.

Client Comment This issue is no longer relevant because we return assets when shares
are specified and vice versa, conforming to the ERC4626 standard.

* @param shares Amount of shares to be withdrawn

CVF-29. FIXED

o Category Suboptimal ¢ Source CollateralTracker.sol

Description This check seems redundant.
Recommendation Consider removing it or explaining why it is necessary.

Client Comment We removed the check.

require(balanceOf(user) <= balanceBefore);

CVF-31. FIXED

+ Category Flaw + Source CollateralTracker.sol

Description The actual check doesn’'t guarantee that the list passed as an argument
matches the actual user positions.

Client Comment This code is no longer present in the codebase, as we now rely solely
on computing a hash of the positions and comparing it to a stored value.

%

if (positionIdList.length == 0 && numActivePositions > 0) revert
< Errors.InputListFail();

PN

ABDK 21

1284

1444

1565

CVF-32. FIXED

+ Category Suboptimal + Source CollateralTracker.sol

Description The expression "tokenld.countLegs()” is calculated on every loop iteration.

Recommendation Consider calculating once and reusing.

for (uint256 index = 0; index < tokenId.countlLegs(); index++) {

CVF-33. FIXED

o Category Overflow/Underflow » Source CollateralTracker.sol

Description Underflow is possible here.
Recommendation Consider using safe conversion.

Client Comment MAINTENANCE_MARGIN_RATIO is now stored as a uint, therefore, con-
version is no longer necessary.

uint256 (s MAINTENANCE MARGIN RATIO),

CVF-34. FIXED

o Category Overflow/Underflow e Source CollateralTracker.sol

Description Phantom overflow is possible here, i.e. a situation when the final calculation
result would fit into the destination type, while some intermediary calculation overflows.

Recommendation Consider using the “muldiv” function or calculating in 256 bits.

Client Comment We modified this to calculate in 256 bits.

required.toRightSlot((sellCollateral * int128(amountMoved

required =
)) / DECIMALS 128);

—

ABDK 22

469

129

152

CVF-36. FIXED

+ Category Suboptimal * Source
SemiFungiblePositionManager.sol

Description The expression “tokenld.countLegs()” is calculated on every loop iteration.

Recommendation Consider calculating once before the loop.

for (uint256 index = 0; index < tokenId.countlLegs(); ++index) {

CVF-37. FIXED

« Category Suboptimal * Source FeesCalc.sol

Description The expression "tokenld.countLegs()” is calculated on every loop iteration.

Recommendation Consider calculating once before the loop.

for (uint256 index = 0; index < tokenId.countLegs();) {

CVF-38. FIXED

o Category Suboptimal » Source PanopticMath.sol

Description The expression “tokenld.countLegs()” is calculated on every loop iteration.

Recommendation Consider calculating once before the loop.

for (uint256 legIndex = 0; legIndex < tokenId.countlLegs();) {

ABDK 23

CVF-39. FIXED

+ Category Suboptimal * Source Tokenld.sol

Description It is possible to deploy two contracts whose addresses don’t differ in the
lower 80 bits.

Recommendation Consider using a more secure approach, such as maintaining a list of
valid Uniswap pools and using an index in this list.

Client Comment In order to avoid possible collisions between pool IDs, we’ve changed
the way poollDs are calculated. In most cases, it will remain the last 8 bytes of the address
for legibility. However, in the event of a collision, the poollD will be incremented by 32 bits
of the hash keccak256(abi.encodePacked(tokenO, token1, fee). This is done deliberately
so it is not possible to manipulate the pool address and the increment value seperately,
as the same values are used as part of the CREATEZ2 salt when Uniswap pools are created
by the factory. If there are multiple collisions, it will be incremented again by the same
value until it no longer collides. This ensures that it is not feasible to either:

1. Prevent a pool from being deployed

2. Overwrite an existing pool with one that posses at colliding poollD

27 * (1) univ3pool 80bits : first 10 bytes of the Uniswap v3
— pool address (first 80 bits; little-endian)

CVF-40. FIXED

+ Category Suboptimal + Source Tokenld.sol

Description The value calculated here is not used in case the leg width is
"MAX_LEG_WIDTH".

Recommendation Consider not performing this calculation in such a case.

395 int24 oneSidedRange = (self.width(legIndex) * tickSpacing) / 2;

ABDK 24

523

552

626

630

CVF-42. FIXED

+ Category Suboptimal * Source Tokenld.sol

Description The expression "self.countLegs()” is calculated on every loop iteration.

Recommendation Consider calculating once and reusing.

for (uint256 i = 0; i < self.countLegs(); ++i) {

CVF-43. FIXED

o Category Suboptimal ¢ Source Tokenld.sol

Description The expression "self.countLegs()” is calculated on every loop iteration.

Recommendation Consider calculating once and reusing.

for (uint256 i = 0; i < self.countLegs(); ++i) {

CVF-45. FIXED

+ Category Suboptimal * Source Tokenld.sol

Recommendation This check could be optimized using a bit mask that covers all the
checked fields.

(XORtokenId.optionRatio(i) != 0) ||
(XORtokenId.numeraire(i) !'= 0) ||
(XORtokenId.isLong(i) !'= 0) ||
(XORtokenId.tokenType(i) != 0) ||
(XORtokenId.riskPartner(i) != 0)

ABDK 25

CVF-48. FIXED

+ Category Suboptimal » Source LeftRight.sol

Recommendation This could be simplified as: unchecked { z = x - y; } require (z <= X);
require (uint128 (z) <= uint128 (x));

191 'unchecked {

uintl28 leftSub = x.leftSlot() - y.leftSlot();

uint128 rightSub = x.rightSlot() - y.rightSlot();

if ((leftSub > x.leftSlot()) || (rightSub > x.rightSlot()))
revert Errors.UnderOverFlow();

return z.toRightSlot(rightSub).toLeftSlot(leftSub);
}

ABDK 26

CVF-49. FIXED

+ Category Suboptimal » Source LeftRight.sol

Recommendation This logic could be simplified: unchecked { int256 left =
int256(uint256(x.leftSlot())) + y.leftSlot(); int128 left128 = int128(left); require (left128
== left); int256 right = int256(uint256(x.rightSlot())) + y.rightSlot(); int128 right128 =
int128(right); require (right128 == right); return z.toRightSlot(right128).toLeftSlot(left128);
}

246 unchecked {
if (x.leftSlot() == type(uintl28).max || x.rightSlot() == type(
< uintl128) .max)
revert Errors.UnderOverFlow();

250 intl128 leftSum = intl128(x.leftSlot()) + y.leftSlot();
intl128 rightSum = int128(x.rightSlot()) + y.rightSlot();

if (
((leftSum < int128(x.leftSlot())) && (y.leftSlot() > 0))
((leftSum > int128(x.leftSlot())) && (y.leftSlot() < 0))
((rightSum < int128(x.rightSlot())) && (y.rightSlot() >
— |
((rightSum > int128(x.rightSlot())) && (y.rightSlot() < 0))
) revert Errors.UnderOverFlow();

||
||
0))

260 return z.toRightSlot(rightSum).toLeftSlot(leftSum);

ABDK 27

271

280

293

300

CVF-50. FIXED

+ Category Suboptimal » Source LeftRight.sol

Recommendation This logic could be simplified: unchecked { int256 left = int256(x.left-
Slot()) + y.leftSlot(); int128 left128 = int128(left); require (Ieft128 == left); int256 right =
int256(x.rightSlot()) + y.rightSlot(); int128 right128 = int128(right); require (right128 ==
right); return z.toRightSlot(right128).toLeftSlot(left128); }

unchecked {
intl28 leftSum = x.leftSlot() + y.leftSlot();
int128 rightSum = x.rightSlot() + y.rightSlot();

if (
((leftSum < x.leftSlot()) && (y.leftSlot() > 0))
((rightSum < x.rightSlot()) && (y.rightSlot() >
((leftSum > x.leftSlot()) && (y.leftSlot() < 0))
((rightSum > x.rightSlot()) && (y.rightSlot() <
) revert Errors.UnderOverFlow();

|l
0)) ||
|l
))
return z.toRightSlot(rightSum).toLeftSlot(leftSum);

CVF-51. FIXED

o Category Suboptimal » Source LeftRight.sol

Recommendation This logic could be simplified: unchecked { int256 left = int256(x.left-
Slot()) - y.leftSlot(); int128 left128 = int128(left); require (left128 == left); int256 right =
int256(x.rightSlot()) - y.rightSlot(); int128 right128 = int128(right); require (right128 ==
right); return z.toRightSlot(right128).toLeftSlot(left128); }

unchecked {

intl28 leftSub = x.leftSlot() - y.leftSlot();

intl128 rightSub = x.rightSlot() - y.rightSlot();

if (
((leftSub > x.leftSlot()) && (y.leftSlot() > 0))
((rightSub > x.rightSlot()) && (y.rightSlot() >
((leftSub < x.leftSlot()) && (y.leftSlot() < 0))
((rightSub < x.rightSlot()) && (y.rightSlot() <

) revert Errors.UnderOverFlow();

| |
0)) ||
| |
0))

return z.toRightSlot(rightSub).toLeftSlot(leftSub);

ABDK 28

228

229

8 Moderate Issues

CVF-9. INFO

+ Category Suboptimal + Source PanopticFactory.sol

Description This function constructs a message and calculates the hash of this message.
Messages constructed on different loop iterations differ only in one field (salt).

Recommendation Consider constructing the message once and only change salt within
it.

Client Comment The function this is in: ‘minePoolAddress’ is never intended to be called
on-chain, so gas efficiency is somewhat moot. Rather, it is a convenience function for
people who want to mine pool addresses on Etherscan instead of doing the work of in-
stalling and configuring software.

newPoolAddress = POOL REFERENCE.predictDeterministicAddress(

CVF-10. INFO

o Category Suboptimal » Source PanopticFactory.sol

Description This function constructs a message and calculates the hash of this message.
Messages constructed on different loop iterations differ only in one field (nonce).

Recommendation Consider constructing the message once and only change nonce
within it.

Client Comment The function this is in: ‘minePoolAddress’is never intended to be called
on-chain, so gas efficiency is somewhat moot. Rather, it is a convenience function for
people who want to mine pool addresses on Etherscan instead of doing the work of in-
stalling and configuring software.

_getSalt(v3Pool, deployer, nonce)

ABDK 29

CVF-11. INFO

+ Category Flaw * Source PanopticPool.sol

Description The returned value is ignored.
Recommendation Consider explicitly requiring the returned value to be true.

Client Comment We cannot productively handle a failure here, so we assume the result
to be true. While it's technically possible under the ERC20 standard, in practice, no le-
gitimate token we know of fails upon approval, especially by returning ‘false’ instead of
reverting.

135 | IERC20(s_token0).approve(address(sfpm), type(uint256).max);
IERC20(s_tokenl).approve(address(sfpm), type(uint256).max);

139 IERC20(s_token0).approve(address(s collateralToken@), type(uint256).
— max) ;

140 IERC20(s tokenl).approve(address(s collateralTokenl), type(uint256).
— max) ;

CVF-18. FIXED

» Category Bad naming » Source PanopticPool.sol

Description These two functions are complimentary getter and setter for the same thing,
but are named very differently.

Recommendation Consider naming consistently.

Client Comment This was refactored with consistent naming,

1695 function setOptionsPositionsFingerprint(address user, uintl128
< newFingerprint) private {

1764 | function getUserPositionHash(address user) private view returns (
— uintl28) {

ABDK 30

43

271

CVF-19. INFO

+ Category Procedural » Source CollateralTracker.sol

Description This contract uses many different integer types: uint256, int256, uint128,
int128, uint64, int64; and often performs unsafe conversions between these types, and
performs unchecked calculations in these types. Such approach is very error-prone.

Recommendation Consider using a single integer type, for example “int256” everywhere
for calculations, and perform checked conversion to narrower type only before writing a
value into a storage variable.

Client Comment This is a fair point, but because this a more general suggestion and not
a specific issue that has been raised, we have determined that at this time we will not be
addressing the issue due to time constraints and an upcoming code freeze. We will keep
it in mind moving forward.

contract CollateralTracker is ERC20 {

CVF-23. INFO

o Category Suboptimal + Source CollateralTracker.sol

Description The current underlying token balance of the Panoptic pool is obtained twice:
once here and another time inside the ”_totalBalance” function.

Recommendation Consider refactoring to obtain the balance once.

Client Comment We chose not to implement this suggestion for readability, since this
function is primarily intended for offchain queries.

balance = IERC20(s underlyingToken).balanceOf(address(s panopticPool
=));
currentTotalBalance = totalBalance();

ABDK 31

CVF-46. INFO

« Category Unclear behavior » Source Tokenld.sol

Description This function silently returns the unmodified value on invalid "i".
Recommendation Consider reverting instead.

Client Comment This is only ever called with i values 0-3 in the codebase. Additionally,
if you try to clear the 5th leg of an option position it will by definition return itself because
there is no 5th leg. Since it is not necessary to check this and revert, we will not be
implementing this suggestion.

670 return self;

CVF-47. FIXED

o Category Suboptimal » Source LeftRight.sol

Recommendation This could be simplified as: unchecked{ z = x + y; } require (z >= Xx);
require (uint128 (z) >= uint128 (x));

173 'unchecked {
uintl28 leftSum = x.leftSlot() + y.leftSlot();
uintl28 rightSum = x.rightSlot() + y.rightSlot();

if ((leftSum < x.leftSlot()) || (rightSum < x.rightSlot()))
revert Errors.UnderOverFlow();

180 return z.toRightSlot(rightSum).toLeftSlot(leftSum);

ABDK 32

25

395

422

439

453

480

CVF-53. FIXED

+ Category Flaw * Source PeripheryPayments.sol

Description The returned value is ignored.

Recommendation Consider explicitly checking that the returned value is true or using the
“TransferHelper” library.

Client Comment We no longer use this library.

IWETH9 (WETH9) . transfer(recipient, value);

CVF-54. INFO

o Category Overflow/Underflow e Source PanopticPool.sol

Description Underflow is possible when converting to “uint256”.
Recommendation Consider using safe conversion.

Client Comment We now convert to a uint24 and add it to the currentTickPriceFee
through a helper function. While underflow is possible, it's acceptable and yields the
expected behavior because the variable is only converted to a uint for the purposes of
adding the variable to the currentTickPrice, and it is always converted back to an int be-
fore any actual use.

uint256(int256(currentTick)).addSqrtPrice(sqrtPriceX96).
— addSwapFee(s tickSpacing),

uint256 (int256(currentTick)).addSqrtPrice(sqrtPricex96),

uint256 currentTickPriceFee = uint256(int256(currentTick)).
— addSwapFee(s tickSpacing);

uint256 currentTickPriceFee uint256(int256 (currentTick));

uint256 currentTickPriceFee uint256(int256(currentTick))

ABDK 33

482

681

835

CVF-55. FIXED

o Category Overflow/Underflow e Source PanopticPool.sol

Description Overflow is possible here.
Recommendation Consider calculating in 256 bits.

Client Comment The code was refactored such that this multiplication no longer occurs.

.addSwapFee (int8(rollITM) * s tickSpacing);

CVF-56. INFO

» Category Overflow/Underflow » Source PanopticPool.sol

Description Overflow is possible here.
Recommendation Consider using checked math and checked conversion.

Client Comment Overflow is not possible here. The conversion to uint128 will never over-
flow because the underlying type stored in the slot is always uint64, and the left shift by
64 is a deliberate operation used to pack the two uint64 utilization values into a single
uint128.

uintl128(rateAndUtilization®.leftSlot()) +
uintl28(rateAndUtilizationl.leftSlot() << 64);

CVF-57. INFO

o Category Overflow/Underflow » Source PanopticPool.sol

Description Underflow is possible here.
Recommendation Consider using checked math.

Client Comment Underflow is not possible here because the function is only ever called
with an offset of 0 or 1, and if called with 1 the positionidList is always at least 1 element
long.

pLength = positionIdList.length - offset;

PN

ABDK 34

CVF-58. INFO

o Category Overflow/Underflow e Source PanopticPool.sol

Description Overflow is possible here.
Recommendation Consider using checked math.

Client Comment Overflow is not possible here using the maximum possible values. The
maximum value for the numerator is 2**128(max slot size) * 2 ** 160(sqrtprice) which
can end up being a maximum of roughly 2**288. However, because we are using mulDiv
which calculates in 512 bits, this is fine because we then divide that oversized nhumerator
by the denominator 2**96 which results in an overall max possible value of 2**¥192, well
below the maximum uint256 value of roughly 2**256.

907) + FullMath.mulDiv(tokenDataO.rightSlot(), sqrtPriceXx96,
— FixedPoint96.Q96));

914 ') + FullMath.mulDiv(tokenData0@.leftSlot(), sqrtPricex96,
— FixedPoint96.Q96));

CVF-59. INFO

o Category Overflow/Underflow » Source PanopticPool.sol

Description Underflow is possible when converting to “uint256".
Recommendation Consider passing the current tick as a signed integer.

Client Comment We now convert to a uint24 and add it to the currentTickPriceFee
through a helper function. While underflow is possible, it's acceptable and yields the
expected behavior because the variable is only converted to a uint for the purposes of
adding the variable to the currentTickPrice, and it is always converted back to an int be-
fore any actual use.

935 burnOptions(tokenId, owner, uint256(int256(currentTick)).
— addSwapFee(s tickSpacing));

ABDK 35

1395

1715

1717

CVF-60. FIXED

+ Category Documentation * Source PanopticPool.sol

Description This comment looks like an unresolved TODO.
Recommendation Consider resolving it.

Client Comment The comment was resolved; no action was needed.

CVF-61. FIXED

o Category Overflow/Underflow e Source PanopticPool.sol

Description Overflow is possible here.
Recommendation Consider using safe conversion.

Client Comment This logic is no longer present. The withdrawal limits by block number
were entirely removed.

uintl28 newRightSlot = uint128(

) + (uintl28(newBlockNumber) << 32);

ABDK 36

CVF-62. FIXED

+ Category Suboptimal + Source CollateralTracker.sol

Description The "decimals”, "name”, and "symbol” properties are optimal in ERC20.
Recommendation Consider not assuming that they present in all tokens.
Client Comment We now use try/catch statements to handle tokens that don’t implement

metadata as expected or at all.

175 's_decimals = IERC20Metadata(underlyingAddress).decimals();
s myName = string.concat(PREFIX, IERC20Metadata(underlyingAddress).
— name());
s _mySymbol = string.concat(PREFIX, IERC20Metadata(underlyingAddress)
— .symbol());

CVF-63. INFO
o Category Overflow/Underflow » Source CollateralTracker.sol

Description Overflow is possible here.
Recommendation Consider using checked math.

Client Comment It is assumed that the amount of any given token contained within the
Panoptic Protocol satisfies the invariant totalAmount < 2**127-1. It is highly unlikely that
any mainnet pool will ever fail to satisfy it. With this constraint in mind, overflow is not
possible.

294 newLocked = s lockedAMM.rightSlot() + amount;
_newAMM = s lockedAMM. leftSlot() + inAMM;

ABDK 37

CVF-64. FIXED
o Category Overflow/Underflow » Source CollateralTracker.sol

Description Over-/underflow is possible here.
Recommendation Consider using checked math or performing calculations in 256 bits.

Client Comment We now calculate it in 256 bits.

479 if (currentTick < (strike - range)) {

488 currNumRangesFromStrike = (2 * (strike - range - currentTick)) /
< range;
(_>

498 currNumRangesFromStrike = (2 * (currentTick - strike - range)) /
< range;

515 (s _EXERCISE COST >> uint256(int256 (minNumRangesFromStrike))) -
s COMMISSION FEE MAX;
C%

CVF-65. FIXED
» Category Overflow/Underflow » Source CollateralTracker.sol

Description Overflow is possible here.
Recommendation Consider calculating in 256-bits.

Client Comment We now calculate it in 256 bits.

521 .toRightSlot((longAmounts.rightSlot() * fee) / DECIMALS 128)
.toLeftSlot((longAmounts.leftSlot() * fee) / DECIMALS 128);

ABDK 38

538

540

562

CVF-66. INFO

o Category Overflow/Underflow » Source CollateralTracker.sol

Description Over-/underflow is possible here.
Recommendation Consider using checked math and safe conversions.

Client Comment |t is assumed that the amount of any given token contained within the
Panoptic Protocol satisfies the invariant totalAmount < 2**127-1. It is highly unlikely that
any mainnet pool will ever fail to satisfy it. With this constraint, overflow is not possible.

int256 (IERC20(s underlyingToken).balanceOf (address(s panopticPool)))
CH -

int256(lockedFunds()) +
(ﬁ

int256(_inAMM());
%

CVF-67. FIXED

o Category Overflow/Underflow » Source CollateralTracker.sol

Description Underflow is possible when converting to "uint256".
Recommendation Consider using safe conversion.

Client Comment We have changed the type of inAMM to uint256 to clarify that it cannot
be negative.

FullMath.mulDiv(uint256(int256(inAMM())), DECIMALS, totalBalance()
—)

ABDK 39

611

613

666

668

670

CVF-68. INFO

o Category Overflow/Underflow » Source CollateralTracker.sol

Description Over-/underflow is possible when converting types.
Recommendation Consider using safe conversions.

Client Comment The results of these expressions will never be negative. util < target_util
is checked earlier in the function, max sell will always be more than min sell, and saturated
will always be more than target. They are also far too small to overflow an int256. There
is no potential for overflow here.

int256(

uint256(int256 (max sell ratio - min sell ratio)),
uint256(int256(utilization - target pool utilization)),
uint256(int256 (saturated pool utilization -

< target pool utilization))

CVF-69. INFO

» Category Overflow/Underflow » Source CollateralTracker.sol

Description Over-/underflow is possible when converting types.
Recommendation Consider using safe conversions.

Client Comment The results of these expressions will never be negative. buy_collat is
always positive, and saturated pool utilization is always more than target and the util is
checked to be below target earlier. They are also far too small to overflow the type by
size. There is no potential for overflow here.

int256 (

uint256 (int256 (buy collateral ratio)),
uint256 (int256 (saturated pool utilization - utilization)),
uint256(int256 (saturated pool utilization -

< target pool utilization))

ABDK 40

CVF-70. INFO

o Category Overflow/Underflow » Source CollateralTracker.sol

Description Over-/underflow is possible when converting types.
Recommendation Consider using safe conversions.

Client Comment The results of these expressions will never be negative (which would
represent an invalid state that is not possible to reach). They are also far too small to
overflow the type by size. There is no potential for overflow here.

715 | int256(

717 uint256(int256 (commission fee max - commission fee min)),
uint256(int256 (utilization - commission start utilization)),
uint256 (int256(target pool utilization -

< commission start utilization))

CVF-71. FIXED

+ Category Flaw + Source CollateralTracker.sol

Description This check wouldn’t work for tokens with zero decimals. Actually, the "deci-
mals” property in ERC-20 is used by Ul to render token amounts in human-readable way.
Using this property in smart contracts is discouraged.

Recommendation Consider just setting the minimum amount of shares in circulation for
a non-empty pool to ensure precision. Also note, that a similar attack could be performed
with a non-empty pool by removing almost all the liquidity just before a deposit transac-
tion of another user.

Client Comment This check was removed, and we now solicit and effectively burn an
initial deposit on creation, ensuring that an attack like this would not be feasible, requiring
many multiples of the target in capital for any prospective frontrunner.

745 if ((_totalBalance() == 0) && (_assets < 10**(s decimals / 2)))

ABDK 41

830

898

941

947

CVF-72. INFO

+ Category Suboptimal + Source CollateralTracker.sol

Recommendation Consider setting a minimum amount of shares for a pool and returning
"max (assets, minShares)” here to ensure sufficient precision.

Client Comment We now have a mechanism where an initial deposit is solicited by the
factory from the deployer, making a large imbalance between assets and shares leading
to precision issues prohibitively costly to create.

? assets

CVF-73. FIXED

+ Category Suboptimal * Source CollateralTracker.sol

Description This would only work in case the delegator has approved tokens to this con-
tract which is weird.

Recommendation Consider using "_transfer” instead.

Client Comment We now uses the internal _transferFrom function of the underlying
ERC20.

transferFrom(delegator, delegatee, shares);
transferFrom(delegatee, delegator, delegateeBalance);

transferFrom(delegatee, delegator, uint256(requestedAmount))
—

ABDK 42

898

941

947

964

CVF-74. FIXED

+ Category Flaw » Source CollateralTracker.sol

Description The returned value is ignored.
Recommendation Consider explicitly requiring the returned value to be true.

Client Comment We no longer use the public transfer function in CollateralTracker, there-
fore, this issue is no longer valid.

transferFrom(delegator, delegatee, shares);
transferFrom(delegatee, delegator, delegateeBalance);

transferFrom(delegatee, delegator, uint256(requestedAmount))
—

CVF-75. INFO

« Category Unclear behavior » Source CollateralTracker.sol

Description It is unclear why excess collateral cannot be transferred.

Client Comment Excess collateral cannot be transferred normally because that would
require a costly calculation on every transfer. We implemented a special redeem function
that checks collateral before allowing a withdrawal to accomplish this, so if PLPs must
move collateral with open positions, they can simply withdraw through the function and
move as they wish.

ABDK 43

1031

1034

1055

1063

MM

1113

1119

CVF-76. INFO

o Category Overflow/Underflow » Source CollateralTracker.sol

Description Under-/overflow is possible here .
Recommendation Consider using checked math.

Client Comment None of these values used here will ever be large enough in magnitude
to cause an over or underflow.

_addLockedAMM(collectedAmount - premium, shortAmount - longAmount);
_addLockedAMM(collectedAmount, shortAmount - longAmount);

tokenToPay = swappedAmount - (shortAmount - longAmount) +
< commissionAmount;

tokenToPay -= premium;

CVF-77. INFO
o Category Overflow/Underflow e Source CollateralTracker.sol

Description Over-/underflow is possible here.
Recommendation Consider using checked math or calculating in 256 bits.

Client Comment None of these values used here will ever be large enough in magnitude
to cause an over or underflow.

int128 absSwappedAmount = swappedAmount < 0@ ? -swappedAmount :
— swappedAmount;

(shortAmount - longAmount + swappedAmount) -
(_absSwappedAmount * swapRate) /

DECIMALS 128 -

currentPositionPremium;

tokenToPay = -currentPositionPremium;

ABDK 44

CVF-78. FIXED

o Category Overflow/Underflow » Source CollateralTracker.sol

Description Overflow is possible here.
Recommendation Consider using checked math or calculating in 256 bits.

Client Comment We now calculate this in 256 bits.

1181 ((shortAmount + longAmount) * cRate + swappedAmount * swapRate) /
DECIMALS 128;

CVF-79. INFO

o Category Overflow/Underflow e Source CollateralTracker.sol

Description Over-/underflow is possible here when converting types.
Recommendation Consider using safe conversion.

Client Comment The maximum pool utilization is 10_000, so this conversion cannot over-
flow.

1185 uint64 utilization = uint64(uintl28(poolUtilization()));

CVF-80. INFO

o Category Overflow/Underflow » Source CollateralTracker.sol

Description Overflow is possible when converting to "int64".
Recommendation Consider converting line this: int128 (uint128 (utilization))

Client Comment The maximum pool utilization is 10_000, so this conversion cannot over-
flow.

1205 intl128(int64(utilization))

ABDK 45

CVF-81. INFO

o Category Overflow/Underflow » Source CollateralTracker.sol

Description Overflow is possible here.
Recommendation Consider using checked math or calculating in 256 bits.

Client Comment At this point premiumAllPositions is always negative, so when we flip
the sign and then cast to uint it cannot cause an overflow.

1249 tokenRequired += uintl128(-premiumAllPositions);

CVF-82. INFO

o Category Overflow/Underflow e Source CollateralTracker.sol

Description Overflow is possible here.
Recommendation Consider using checked math or calculating in 256 bits.

Client Comment The total required collateral is assumed to be less than 2**128, so with
this constraint in mind no overflow is possible here .

1362 tokenRequired += tokenRequired;

CVF-83. INFO

o Category Overflow/Underflow » Source CollateralTracker.sol

Description Underflow is possible when converting to “uint256”".
Recommendation Consider using safe conversion.

Client Comment Because the sell collateral ratio and buy collateral ratio will never be
negative, casting these values from an int to a uint cannot cause an overflow.

1390 ' uint256 sellCollateral = uint256(

1399 uint256 buyCollateral = uint256(

PN

ABDK 46

CVF-84. INFO

o Category Overflow/Underflow » Source CollateralTracker.sol

Description Overflow is possible when converting to “int64”.
Recommendation Consider using safe conversion.

Client Comment The maximum pool utilization is 10_000, so this conversion cannot over-
flow.

1391 int256(sellCollateralRatio(int128(int64(utilization))))

1400 int256(buyCollateralRatio(int128(int64(utilization))))

CVF-85. INFO

o Category Overflow/Underflow o Source CollateralTracker.sol

Description Underflow is possible when converting to “uint128”.
Recommendation Consider using safe conversion.

Client Comment Short/Long amount is always positive so this will never overflow.
1437 getRequiredCollateralAtUtilization(uint128(shortAmount), 0,
— utilization) +

_getRequiredCollateralAtUtilization(uint128(longAmount), 1,
— utilization);

ABDK 47

1437

1464

1540

CVF-86. INFO

o Category Overflow/Underflow » Source CollateralTracker.sol

Description Overflow is possible here.
Recommendation Consider using checked math or calculating in 256 bits.

Client Comment Short/Long amount is always positive so this will never overflow.

_getRequiredCollateralAtUtilization(uintl128(shortAmount), 0,
— utilization) +

_getRequiredCollateralAtUtilization(uint128(longAmount), 1,
— utilization);

CVF-87. INFO

o Category Overflow/Underflow o Source CollateralTracker.sol

Description Overflow is possible here.
Recommendation Consider using checked math or calculating in 256 bits.

Client Comment The required collateral will never be more than 2**128-1, so this cannot
overflow.

requiredCollateralAsTokens += tmpCollateralTokensRequired.leftSlot
— ()3

CVF-88. INFO

o Category Overflow/Underflow » Source CollateralTracker.sol

Description Overflow is possible here.

Client Comment The maximum pool utilization is 10_000, so this conversion cannot over-
flow.

? uint64(poolUtilization)

ABDK 48

1554

1563

1565

CVF-89. INFO

o Category Overflow/Underflow » Source CollateralTracker.sol

Description Underflow is possible here.
Recommendation Consider using safe conversion.

Client Comment getRequiredCollateralAtUtilization returns an unsigned integer, so un-
derflow cannot occur. Overflow would not occur because the value of the required col-
lateral is assumed to be less than the maximum int value.

int128(getRequiredCollateralAtUtilization(amountMoved, 1,
— utilization))

CVF-90. INFO

o Category Overflow/Underflow o Source CollateralTracker.sol

Description Overflow is possible when converting to “int64”.
Recommendation Consider using safe conversion.

Client Comment The maximum pool utilization is 10_000, so this conversion cannot over-
flow.

intl128 sellCollateral = sellCollateralRatio(int128(int64(
— utilization)));

CVF-91. INFO

o Category Overflow/Underflow » Source CollateralTracker.sol

Description Overflow is possible when converting to “int128”".
Recommendation Consider using safe conversion.

Client Comment amountMoved is assumed to never exceed the maximum int128 value,
so with that constraint in mind this conversion cannot overflow.

required = required.toRightSlot((sellCollateral * int128(amountMoved
<)) / DECIMALS 128);

PN

ABDK 49

1615

1633

1683

1731

CVF-92. INFO

o Category Overflow/Underflow » Source CollateralTracker.sol

Description Underflow is possible here.
Recommendation Consider using safe conversion.

Client Comment It is not possible for this value to underflow because MulDiv always
returns a positive value.

int128(
int256(

int128(int256 (FullMath.mulDiv (amountMoved, c3, DECIMALS)))

CVF-93. INFO

» Category Overflow/Underflow » Source CollateralTracker.sol

Description Overflow is possible here.
Recommendation Consider using safe conversion.

Client Comment amountMoved is assumed to never exceed the maximum int128 value,
so in this case it will never overflow.

? required.tolLeftSlot(-int128(amountMoved))
required.toLeftSlot(int128(amountMoved));

CVF-94. FIXED

o Category Overflow/Underflow » Source CollateralTracker.sol

Description Over-/underflow is possible here.

Recommendation Consider using checked math or calculating in 256 bits.

((requiredCurrent - requiredBase) * (DECIMALS 128 - requiredBase /
— 2)) /
(DECIMALS 128 - requiredBase / 2) +

PN

ABDK 50

247

290

689

690

CVF-95. INFO

o Category Overflow/Underflow » Source
SemiFungiblePositionManager.sol

Description Overflow is possible here.
Recommendation Consider using safe conversion.

Client Comment The balances are assumed to never exceed the maximum uint128 value,
so with that constraint in mind this conversion cannot overflow.

uintl128 balance

uint128(balance0f(msgSender(), tokenId));

uint128 balance = uint128(balanceOf(msgSender(), oldTokenId));

CVF-96. INFO

» Category Overflow/Underflow » Source
SemiFungiblePositionManager.sol

Description Overflow is possible here when converting to “int128".

Client Comment The amounts are assumed to never exceed the maximum int128 value,
so with that constraint in mind this conversion cannot overflow.

movedAmounts = movedAmounts.toRightSlot(-int128(amount0.toUint128())
—).toLeftSlot(
-int128 (amountl.toUint128())
);

ABDK 51

CVF-97. INFO

o Category Overflow/Underflow » Source
SemiFungiblePositionManager.sol

Description Underflow is possible here.
Recommendation Consider using checked math.

Client Comment As can be seen in the conditional directly above this, these conversions
are only run if the value being cast is more than O, i.e when underflow is impossible.

756 ? receivedAmount® - uintl28(moved.rightSlot())

759 | ? receivedAmountl - uintl128(moved.leftSlot())

ABDK 52

214

225

365

370

373

379
380

382

390

CVF-98. INFO

o Category Overflow/Underflow » Source FeesCalc.sol

Description Over-/underflow is possible when converting types.
Recommendation Consider using safe conversion.

Client Comment None of these values will be large enough/negative such that they would
exceed their containers or those they are being cast to, so there is no risk for overflow.

int128(
int256(

int128(
int256(

uintl28(uint256(op[index][1])),

fees® -= int128(
int256 (

uintl28(feesToken.rightSlot() - op[index][0].rightSlot()
=5 Uy

feesl -= int128(
int256(

uint128(feesToken.leftSlot() - op[index][0].leftSlot()),

fees® += intl128(feesToken.rightSlot() - op[index][0].rightSlot());
feesl += int128(feesToken.leftSlot() - op[index][0].leftSlot());

ABDK 53

266

98

110

122

CVF-99. FIXED

o Category Overflow/Underflow e Source PanopticMath.sol

Description Overflow is possible here.
Recommendation Consider using checked math or calculating the sum in 256 bits.

Client Comment We now calculate this sum in 256 bits.

if (Math.abs(tickUpper + tickLower) < TickMath.MAX TICK) {

CVF-100. INFO

o Category Overflow/Underflow » Source LiquidityChunk.sol

Description Overflow is possible here.
Recommendation Consider using checked arithmetic or bitwise operations.

Client Comment These functions are only used to build from an empty liquidityChunk,
thus, the slots they are adding to will always be O-initialized, so there is no potential for
overflow.

return self + uint256(amount);
return self + (uint256(int256(tickLower)) << 232);

return self + ((uint256(int256(tickUpper)) & uint256(BITMASK INT24))
— << 208);

ABDK o4

CVF-101. INFO

o Category Overflow/Underflow e Source Tokenld.sol

Description Overflow is possible in multiplication.
Recommendation Consider adding a range check for the "legindex” argument.

Client Comment The only values used for legindex in the codebase are 0,1,2, or 3. Adding
a range check would simply waste gas.

19 \(return uint256((self >> (80 + legIndex * 4)) % 8); J

134 |return uint256((self >> (80 + legIndex * 4 + 3)) % 2);

149 |return uint256((self >> (96 + legIndex * 40)) % 2);

161 \/return uint256((self >> (96 + legIndex * 40 + 1)) % 2); ‘

179 \/return uint256((self >> (96 + legIndex * 40 + 2)) % 4);

191 \‘/return int24(int256(self >> (96 + legIndex * 40 + 4))); \

204 [/return int24 (int256((self >> (96 + legIndex * 40 + 28)) % 4096)); \\

239 \(return self + (uint256(optionRatio % 8) << (80 + legIndex * 4)); J

257 {/return self + (uint256(numeraire % 2) << (80 + legIndex * 4 + 3));

278 \ return self

+

(uint256(isLong % 2) << (96 + legIndex * 40));

\°

294 \/retu rn self

=+

(uint256(tokenType % 2) << (96 + legIndex * 40 + 1)); \

310 return self + (uint256(riskPartner % 4) << (96 + legIndex * 40 + 2) |
=);

|\ J

N

326 /return self + uint256((int256(strike) & BITMASK INT24) << (96 +
< legIndex * 40 + 4));

343 return self + (uint256(uint24(width) % 4096) << (96 + legIndex * 40 |
— + 28));

PN

ABDK 55

362

374

395

CVF-102. FIXED

+ Category Suboptimal * Source Tokenld.sol

Description This flips the "isLong” bits even for inactive legs making the whole value
inconsistent, as a comment above says that an inactive leg has all bits set to zero.

Recommendation Consider either changing the comment above to allow "isLong” bit for
an inactive leg to be non-zero, or correcting this logic to not affect inactive legs.

Client Comment We corrected the logic to not affect inactive legs

return self ~ LONG MASK;

CVF-103. FIXED

o Category Suboptimal * Source Tokenld.sol

Description This may count inactive legs, as an inactive leg may have the "isLong” flag
set to true.

Client Comment All inactive bits are checked to ensure they are not set now.

return self.islLong(@) + self.islLong(l) + self.isLong(2) + self.
— 1slLong(3);

CVF-104. INFO

o Category Overflow/Underflow o Source Tokenld.sol

Description Overflow is possible during multiplication.
Recommendation Consider using checked math, or performing multiplication in 256 bits.

Client Comment Overflow is not possible because the maximum supported width is 4095
and the maximum supported tick spacing is 200.

int24 oneSidedRange = (self.width(legIndex) * tickSpacing) / 2;

ABDK 56

459

592

661

CVF-105. FIXED

+ Category Flaw » Source Tokenld.sol

Recommendation It should also be ensured that the "numeraire” bits for the upper legs
are zero. Otherwise, the "countLegs” function would be screwed.

if (self.optionRatio(j) '= 0) revert Errors.InvalidTokenIdParameter
— (1);

CVF-106. FIXED

o Category Suboptimal + Source Tokenld.sol

Description This also compares inactive legs, that are not guaranteed to be zeroed in the
current implementation.

Recommendation Consider either not comparing them or guaranteeing them to be ze-
roed.

Client Comment Inactive legs are now guaranteed to be zeroed.

return ((oldTokenId & ROLL MASK) == (newTokenId & ROLL MASK));

CVF-107. INFO

+ Category Documentation * Source Tokenld.sol

Description When clearing a leg, this function doesn’t clear the consequent legs, thus it
may produce gaps.

Recommendation Consider clearly documenting this behavior.

Client Comment This behavior is clearly stated in the NatSpec and its function is also
apparent in the one place where it is used. In our opinion, further documentation is not
required.

function clearlLeg(uint256 self, uint256 i) internal pure returns (
— uint256) {

ABDK 57

CVF-108. INFO

o Category Overflow/Underflow » Source TickPriceFeelnfo.sol

Description Overflow is possible here.
Recommendation Consider adding overflow checks.

Client Comment This function is not intended to handle existing bits in the slot it’s writing
to. Overflow will not occur as long as the slot is O-initialized.

78 return self + uint256(int256(currentTick) & BITMASK INT24);
88 return self + (uint256(sqrtPriceX96) << 24);

98 return self + ((uint256(int256(swapFee) & BITMASK INT24)) << 184);

CVF-111. FIXED

o Category Suboptimal » Source LeftRight.sol

Recommendation Should be ">" rather than ”>=".

n

Client Comment We changed the operator to ”>".

377 if (self >= uint256(type(int256).max)) revert Errors.CastingError();

ABDK 58

56

69

81

94

132

9 Minorlssues

CVF-109. INFO
o Category Overflow/Underflow » Source LeftRight.sol

Description This may overflow into the left slot.

Recommendation Consider either implementing some protection against this or clearly
describing this behavior.

Client Comment This function is not intended to handle existing bits in the slot it's writing
to, so we clarified this in a comment. We have ‘add’ and 'sub’ functions for this purpose.

return self + uint256(right);
return self + uint256(int256(right));
return self + int256(uint256(right));

return self + (int256(right) & RIGHT HALF BIT MASK);

CVF-110. INFO

o Category Overflow/Underflow » Source LeftRight.sol

Description Overflow is possible here.

Client Comment This function is not intended to handle existing bits in the slot it's writing
to, so we clarified this in a comment. We have ‘add’ and 'sub’ functions for this purpose.

return self + (uint256(left) << 128);

144 return self + (int256(intl28(left)) << 128);

156 return self + (int256(left) << 128);

ABDK 59

17

22

2

CVF-118. INFO

+ Category Bad datatype * Source PeripheryPayments.sol

Recommendation The type of this argument should be “IERC20".

Client Comment We no longer use this library.

address token,

CVF-119. FIXED

« Category Suboptimal » Source PeripheryPayments.sol

Description This branch prefers wrapping plain ether into WETH rather than using exist-
ing “WETH" balance.

Recommendation Consider preferring existing “WETH”".

Client Comment We no longer use this library.

if (token == WETH9 && address(this).balance >= value) {

CVF-130. FIXED

o Category Suboptimal » Source PanopticFactory.sol

Description Specifying a particular compiler version makes it harder to migrate to newer
versions.

Recommendation Consider specifying as "*0.8.0". Also relevant for: FeesCalc.sol,
CollateralTracker.sol, PanopticMath.sol, Math.sol, LiquidityChunk.sol, Tokenld.sol, Tick-
PriceFeelnfo.sol, LeftRight.sol, Errors.sol, ISemiFungiblePositionManager.sol, IPanop-
ticPool.sol.

Client Comment We opted to loosen the pragma for certain non-core contracts in the
interest of composability. For now, the core contracts will remain on a specific version in
the interest of security.

pragma solidity =0.8.17;

PN

ABDK 60

34

40

44

46

CVF-131. FIXED
+ Category Bad datatype * Source PanopticFactory.sol
Recommendation The type of this variable should be “lUniswapV3Factory”.

address private immutable univ3Factory;

CVF-132. FIXED

+ Category Bad datatype » Source PanopticFactory.sol

Recommendation The type of this mapping should be: mapping(lUniswapV3Pool =
IPanopticPool)”.

mapping(address => address) private s getPanopticPool;

CVF-133. INFO

+ Category Bad datatype » Source PanopticFactory.sol

Recommendation The type of this variable should be “lUniswapV3Pool".

Client Comment As a call is not made directly with this type, we won’t be implementing
this change in the interest of composability.

address private immutable POOL REFERENCE;

CVF-134. INFO

+ Category Bad datatype » Source PanopticFactory.sol

Recommendation The type of this variable should be “CollateralTracker” or an interface
extracted from it.

Client Comment As a call is not made directly with this type, we won’t be implementing
this change in the interest of composability.

address private immutable COLLATERAL REFERENCE;

I

ABDK 61

65

118

208

273

CVF-135. FIXED

+ Category Bad datatype * Source PanopticFactory.sol

Recommendation The argument types should be “ISemiFungiblePositionManager” and
“IUniswapV3Factory” respectively.

constructor(address _SFPM, address _univ3Factory) ERC1155("") {

CVF-136. INFO

+ Category Bad datatype e Source PanopticFactory.sol

Recommendation The type of these arguments should be “IERC20".

Client Comment In the interest of composability we will not be implementing these
changes. The documentation makes it very clear what this variable represents.

address token0,
address tokenl,

address token0,
address tokenl,

address token@,
address tokenl,

CVF-137. FIXED

+ Category Documentation + Source PanopticFactory.sol

Description The semantics of this argument is unclear.

Recommendation Consider documenting.

214 uint256 minTargetRarity

ABDK 62

215

239

288

CVF-138. FIXED

+ Category Bad naming * Source PanopticFactory.sol

Description The semantics of the returned values is unclear.

Recommendation Consider giving descriptive names to the returned values and/or ex-
plaining in the documentation comment.

) external view returns (uint256, uint256) {

CVF-139. FIXED

« Category Suboptimal * Source PanopticFactory.sol

Description Passing some big number (bigger than 64) as “minTargetRarity” would have
the same effect as passing zero.

Recommendation Consider removing the comparison with zero to save gas.

if ((minTargetRarity > 0) && rarity >= minTargetRarity) {

CVF-140. INFO

+ Category Bad datatype » Source PanopticFactory.sol

Recommendation The type of this argument should be “lUniswapV3Pool".

Client Comment We opted not to implement this in the interest of composability. The
value is clearly documented.

address v3Pool,

ABDK 63

292

45

50

46

CVF-141. INFO

+ Category Bad datatype * Source PanopticFactory.sol

Recommendation The conversion to “address” is redundant as “v3Pool” is already “ad-
dress”.

Client Comment We opted not to implement this in the interest of composability. The
value is clearly documented.

return keccak256(abi.encodePacked(address(v3Pool), deployer, nonce))
—

CVF-142. INFO

+ Category Suboptimal + Source PanopticPool.sol

Recommendation These variables should be declared as immutable. This would require
some refactoring to makes tham assigned in the constructor.

Client Comment We cannot store values in the constructor because this contract is de-
ployed via a proxy.

IUniswapV3Pool private s univ3pool;
address private s token0;

address private s tokenl;

int24 private s tickSpacing;

CollateralTracker private s collateralToken0;
CollateralTracker private s collateralTokenl;

CVF-143. INFO

+ Category Bad datatype + Source PanopticPool.sol

Recommendation The type of these variables should be “IERC20".

Client Comment We opted not to implement this in the interest of composability. The
values are clearly documented.

address private s token0;
address private s tokenl;

I

ABDK 64

60

67

68

73

CVF-144. FIXED

+ Category Suboptimal + Source PanopticPool.sol

Description Modifier definitions are intermixed with variable definitions.

Recommendation Consider placing modifies after variables.

modifier onlyFactory() {

modifier onlyFactoryOwner() {

CVF-145. FIXED

o Category Suboptimal » Source PanopticPool.sol

Recommendation Conversion to “IPanopticFactory” is redundant as “factory” is already
“IPanopticFactory”.

if (_msgSender() != IPanopticFactory(factory).factoryOwner()) revert
< Errors.NotOwner();

CVF-146. FIXED

+ Category Documentation + Source PanopticPool.sol

Description The semantics of the first key is unclear.

Recommendation Consider documenting.

mapping(address => mapping(uint256 => mapping(uint256 => mapping(
— uint256 => int256))))

ABDK 65

73

81

89

96

98

CVF-147. INFO

+ Category Suboptimal + Source PanopticPool.sol
Recommendation It would be more efficient to merge these mappings into a single map-

ping whose keys are user addresses and values are structs with three fields encapsulating
values of the original mappings.

Client Comment While a fair suggestion, we have opted not to implement this at the time
of writing due to time constraints. We will keep this under consideration.

mapping(address => mapping(uint256 => mapping(uint256 => mapping(
< uint256 => int256))))

mapping(address => mapping(uint256 => uint256)) private
< s positionBalance;

mapping(address => uint256) private s positionDetails;

CVF-148. FIXED

+ Category Bad datatype » Source PanopticPool.sol

"

Recommendation The argument type should be “ISemiFungiblePositionManager”.

constructor(address sfpm) {

CVF-149. INFO

+ Category Readability « Source PanopticPool.sol

Description The panoptic factory address is implicitly passed as the message sender.
Such implicit arguments make code harder to read.

Recommendation Consider passing explicitly.

Client Comment We opted not to do this as taking the sender is somewhat more gas
efficient, and the contract is only intended to be deployed by the factory.

factory = IPanopticFactory(msgSender());
c_)

I

ABDK 66

CVF-150. FIXED

+ Category Bad datatype * Source PanopticPool.sol

Recommendation The argument types should be “lUniswapV3Pool” and “Collateral-
Tracker” respectively.

Client Comment The Uniswap V3 pool is now referenced via interface. However, for
better composability with the rest of the system, we have decided against modifying the
type of the collateral reference here. The documentation makes it clear what contract
address type this parameter is representing.

104 function startPool(address univ3pool, address collateralReference)

CVF-151. FIXED

o Category Suboptimal » Source PanopticPool.sol

Description This function always returns true.

Recommendation Consider returning nothing.

108 returns (bool success)

CVF-152. INFO

+ Category Bad datatype o Source PanopticPool.sol

Recommendation The type of the “token” argument should be “IERC20".

Client Comment The token argument was removed altogether.

146 function updateParameters(address token, uint256 parameterData)

ABDK 67

233

234

352

CVF-153. INFO

+ Category Readability + Source PanopticPool.sol

Recommendation Should be “else if".

Client Comment There is no need for an else because the code would only ever be
reached if the previous condition did not evaluate to true.

if (tokenIndex == 1) return s collateralTokenl.getPoolData();

CVF-154. INFO

« Category Readability + Source PanopticPool.sol

Recommendation Should be “else revert”.

Client Comment There is no need for an else because the code would only ever be
reached if the previous condition did not evaluate to true.

revert Errors.InvalidToken();

CVF-155. FIXED

+ Category Suboptimal * Source PanopticPool.sol

Description Misordered ticks could signal a bug in client code.
Recommendation Consider reverting on misordered ticks.

Client Comment We no longer perform this check, so it reverts if the ticks are misordered.

c_)
(tickLimitLow, tickLimitHigh) = tickLimitLow < tickLimitHigh

? (tickLimitLow, tickLimitHigh)
(tickLimitHigh, tickLimitLow);

ABDK 68

CVF-156. FIXED

+ Category Suboptimal + Source PanopticPool.sol

Description These functions always return true.

Recommendation Consider returning nothing.

407 \/) external override returns (bool) {

434 \/) external override returns (bool) { \

447 (function burnOptions(uint256 tokenId) external override returns (
| — bool) {

|\ J

468 \/) external override returns (bool) {

CVF-157. FIXED

+ Category Procedural » Source PanopticPool.sol

Recommendation It is a good practice to put the argument name as a comment next to
a boolean literal passed as an argument.

Client Comment This flag is no longer passed.

1136 | false

CVF-158. FIXED

o Category Documentation » Source PanopticPool.sol

Recommendation Uniswap.

1280 ‘/,// Get the current tick from the Uniswpa pool

ABDK 69

CVF-159. INFO

+ Category Bad datatype * Source PanopticPool.sol

Recommendation The type of this argument should be “IERC20".

Client Comment This function was removed.

1325 ' address token,

CVF-160. FIXED

o Category Suboptimal » Source PanopticPool.sol

Recommendation Explicit conversion to “int256” is redundant, as compiler does such
conversions automatically.

Client Comment The underlying type was changed to uint256.

1379 adjustedAssets = collateralToken.revoke(msgSender(), delegatee,
< 1nt256 (requestedAmount));

CVF-161. INFO

+ Category Suboptimal * Source PanopticPool.sol

Description This check makes it redundant for the “_touchedld” argument to be an array.
Recommendation Consider turning this argument into an atomic value.

Client Comment The reason why the singular touchedid is an array is so it composes
well with the rest of the system: _administrateAccount’ expects a list of positions to be
touched, so is the only way to pass a single position.

1430 if (touchedId.length !'= 1) revert Errors.InputListFail();

ABDK 70

CVF-162. INFO

+ Category Suboptimal + Source PanopticPool.sol

Description Relying on business-level constraints makes code more error-prone.
Recommendation Consider using safe conversion.

Client Comment Because this value will never be negative, there is no need to do a safe

conversion.
1457 delegatedAmounts = uint256(longAmounts);
s
}

CVF-163. FIXED

o Category Suboptimal » Source PanopticPool.sol

Recommendation Consider using safe conversion for “exerciseFees”.

Client Comment The event has been changed to emit a signed int instead.

1462 emit ForcedExercised(msgSender(), account, touchedId[0], uint256(
— exerciseFees));

CVF-164. INFO

+ Category Bad datatype » Source PanopticPool.sol

Recommendation The argument type should be “IERC20".

Client Comment We opted not to implement this in the interest of composability. The
values are clearly documented.

1607 | function getCollateralToken(address token) private view returns (
— CollateralTracker) {

ABDK 71

CVF-165. INFO

+ Category Readability + Source PanopticPool.sol

Recommendation Should be “else if".

Client Comment For the sake of readability and organization, we have decided to struc-
ture our if statements this way. There is no efficiency to be gained by using an else if
/else block.

1610 if (token == s tokenl) return s collateralTokenl;

CVF-166. INFO

+ Category Readability » Source PanopticPool.sol

Recommendation Should be “else revert”.

Client Comment For the sake of readability and organization, we have decided to struc-
ture our if statements this way. There is no efficiency to be gained by using an else if
/else block.

1611 revert Errors.InvalidToken();

CVF-167. FIXED

+ Category Suboptimal * Source PanopticPool.sol

Description This check seems redundant and just wastes gas.

Recommendation Consider removing it and doing proper checked conversions instead.

1725 if (_getLastRecordedBlockNumber(user) != newBlockNumber) revert
— Errors.InvalidUserState();

ABDK 72

CVF-168. FIXED

+ Category Suboptimal + Source PanopticPool.sol

Recommendation Final conversions to “uint256” are redundant.

1746 return uint256(uint32(getUserOptionsDetails(user).rightSlot()))
| =

1756 \ return uint256(uint32(getUserOptionsDetails(user).rightSlot() >>
< 32));

CVF-169. INFO

o Category Suboptimal + Source CollateralTracker.sol

Recommendation It would be more efficient to make these variables immutable, but this
would require some refactoring: i) moving the initialization logic from the "startToken”
function into the constructor and ii) packing name and symbol into 256-bit words.

Client Comment We cannot store values in the constructor because this contract is de-
ployed via a proxy.

50 \/string private s myName; \
'string private s_mySymbol; |
'uint8 private s_decimals; |

60 {/address private s owner; // onlyOwner \

65 \raddress private s underlyingToken; \

69 \raddress private s univ3token0; \
70 \address private s univ3tokenl; \

73 {/bool private s underlyingIsToken0; \

78 \‘V'IPanopticPool private s panopticPool; \

ABDK 73

60

78

60

65

CVF-170. FIXED

+ Category Suboptimal + Source CollateralTracker.sol

Description These two variable seem to have the same value.

Recommendation Consider merging into one variable.

address private s owner;

IPanopticPool private s panopticPool;

CVF-171. FIXED

o Category Suboptimal ¢ Source CollateralTracker.sol

Description While this variable is private, its value is exposed in every "ParametersUp-
dated” event.

Recommendation Consider making this variable public and removing it from the event.

Client Comment This variable was removed along with the event being moved into the
PanopticPool, which no longer logs the owner.

address private s owner;

CVF-172. INFO

+ Category Bad datatype + Source CollateralTracker.sol

Recommendation The type of this variable should be "IERC20".

Client Comment We opted not to implement this in the interest of composability. The
values are clearly documented.

address private s underlyingToken;

ABDK 74

CVF-173. INFO

+ Category Bad datatype + Source CollateralTracker.sol

Recommendation The type of these variables should be "IERC20".

Client Comment We opted not to implement this in the interest of composability. The
values are clearly documented.

69 address private s univ3token@;
70 |address private s univ3tokenl;

CVF-174. FIXED

+ Category Procedural + Source CollateralTracker.sol

Description UPPER_CASE is commonly used for constants.
Recommendation Consider using camelCase for variables.

Client Comment We no longer use UPPER_CASE for storage variables

91 int128 private s COMMISSION FEE MIN;
intl128 private s COMMISSION FEE MAX;
intl128 private s COMMISSION START UTILIZATION;

96 int128 private s SELL COLLATERAL RATIO;
int128 private s BUY COLLATERAL RATIO;

100 intl128 private s EXERCISE COST;
int256 private s MAINTENANCE MARGIN RATIO;

104 'int128 private s TARGET POOL UTILIZATION;
int128 private s SATURATED POOL UTILIZATION;

ABDK 75

112

128

139

CVF-175. INFO

+ Category Bad naming » Source CollateralTracker.sol

Recommendation Events are usually named via nouns, such as "Parameters”.

Client Comment This is only true in certain style guides. We have chosen to adopt past-
ense events as we believe they are more readable.

event ParametersUpdated(address indexed owner, uint256 toParameters)
—

CVF-176. FIXED

+ Category Procedural + Source CollateralTracker.sol

Recommendation It is a good practice to put a comment into an empty block to explain
why the block is empty.

Client Comment The empty constructor block was removed altogether.

constructor() ERC20("", "") {}

CVF-177. INFO

+ Category Bad datatype ¢ Source CollateralTracker.sol

Recommendation The argument type should be IERC20.

Client Comment We opted not to implement this in the interest of composability. The
values are clearly documented.

function startToken(address underlyingAddress) external {

ABDK 76

145

148

161

165

CVF-178. FIXED

+ Category Suboptimal + Source CollateralTracker.sol

Description This check is redundant as it is anyway possible to pass a dead underlying
address.

Recommendation Consider removing this check.

if (underlyingAddress == address(0)) revert Errors.
— InvalidInputAddress();

CVF-179. INFO

o Category Suboptimal + Source CollateralTracker.sol

Description The message sender address is obtained several times.
Recommendation Consider obtaining once and reusing.

Client Comment The code now uses msg.sender directly.

IUniswapV3Pool uniswapPool = IPanopticPool(msgSender()).univ3pool()
=

s owner = msgSender();

s _panopticPool = IPanopticPool(msgSender());

ABDK 77

182

184

188

191

194

208 * @return true if the update went through without reverts

CVF-180. INFO

+ Category Suboptimal + Source CollateralTracker.sol

Recommendation The default parameter values should be named constants.

Client Comment We cannot store these values as constants because this contract is
deployed via a proxy

s _MAINTENANCE MARGIN RATIO = 11 111; // prevents minting of new
— options at when collateral < 1.1111*required

s COMMISSION FEE MIN = 20; // minimum commission fee when pool
— utilization > TARGET POOL UTILIZATION

s COMMISSION FEE MAX = 60; // maximum committion fee when pool
— utilization < COMMISSION START UTILIZATION

s COMMISSION START UTILIZATION = 1 000; // threshold above which the
— commission fee starts to decrease

s SELL COLLATERAL RATIO = 2 000; // basal collateral ratio for
— selling an option (20% of notional)

s _BUY COLLATERAL_RATIO = 1 000; // basal collateral ratio for buying
— an option (10% of notional)

N

s TARGET POOL UTILIZATION = 5 000; // Target pool utilization where
— buying+selling is optimal

s SATURATED POOL UTILIZATION = 9 000; // Pool utilization above
— which selling is 100% collateral backed

s_EXERCISE_COST = -1 024; // basal cost to force exercise a position

— that is barely far-the-money (out-of-range).

CVF-181. FIXED

» Category Suboptimal » Source CollateralTracker.sol

Description This effectively means that the function never returns any value other than
true.

Recommendation Consider returning nothing.

\4

ABDK 78

228

230

235

CVF-182. FIXED

+ Category Suboptimal + Source CollateralTracker.sol

Description The final widening conversions are redundant, as compiler does such con-
versions automatically.

Recommendation Consider removing the final conversions.

Client Comment This code has been refactored to take a struct, so the conversions are
no longer needed.

((s_MAINTENANCE MARGIN RATIO = int256(intl6(uintl6(parameterData
—)))) <=0) ||
((s_COMMISSION FEE_MIN
— 16)))) <= 0) ||
((s_COMMISSION FEE_MAX
— 32)))) <=0) ||

((s_COMMISSION START UTILIZATION = int128(intl6(uintl6(
< parameterData >> 48)))) <= 0) ||

((s_SELL COLLATERAL RATIO = int128(intl6(uintl6(parameterData >>
<~ 64)))) <= 0) ||

((s_BUY COLLATERAL RATIO = intl128(intl6(uintl6(parameterData >>
— 80)))) <= 0) ||

int128(int16(uintl6(parameterData >>

int128(int16(uintl6(parameterData >>

((s_TARGET POOL UTILIZATION = int128(intl6(uintl6(parameterData
— >> 128)))) <= 0) ||

((s_SATURATED POOL UTILIZATION = int128(intl6(uintl6(
< parameterData >> 144)))) <= 0)

239 s EXERCISE COST = int128(intl6(uintl6(parameterData >> 96)));

CVF-183. FIXED

o Category Suboptimal + Source CollateralTracker.sol

Description Here a value that was just written into the storage is read back again.
Recommendation Consider using the written value instead.

Client Comment This code is no longer present.

240 if (s _EXERCISE COST >= 0) revert Errors.InvalidInputParameters();

ABDK 79

CVF-184. INFO

+ Category Suboptimal + Source CollateralTracker.sol

Description The functions “_inAMM” and ”_lockedFunds” are called twice: once another
time inside the ”_totalBalance” function.

Recommendation Consider refactoring to call them only once.

Client Comment We've opted not to refactor this in the interest of increasing readability
and reducing complexity.

272 currentTotalBalance = totalBalance();
insideAMM = inAMM();
totalLocked = lockedFunds();

CVF-185. FIXED

» Category Suboptimal » Source CollateralTracker.sol
Recommendation This could be optimized as: if (amount | _inAMM == 0) return;
288 if ((amount == 0) && (inAMM == 0)) return;

CVF-186. FIXED

o Category Suboptimal + Source CollateralTracker.sol

Description This expression is calculated twice.
Recommendation Consider calculating once and reusing.

Client Comment This expression is no longer calculated twice.

361 FullMath.mulDiv(tokenData.rightSlot(), FixedPoint96.Q96,
— sqrtPriceX96) +

376 FullMath.mulDiv(tokenData.rightSlot(), FixedPoint96.Q96,
— sqrtPriceX96),

PN

ABDK 80

CVF-187. FIXED

+ Category Suboptimal + Source CollateralTracker.sol

Recommendation While the “muldiv” function is very efficient in general case, for specific
cases more efficient approaches do exist. For example, when numerator or denominator
is a power of 2, multiplication or division could be replaced by shift. When denominator
is a compile-time constant, the reciprocal of the denominator could be precomputed.

361 FullMath.mulDiv(tokenData.rightSlot(), FixedPoint96.Q96,
— sqrtPriceX96) +
FullMath.mulDiv(otherTokenData.rightSlot(), sqrtPriceX96,
— FixedP0oint96.Q96);

370 FullMath.mulDiv(tokenData.leftSlot(), FixedPoint96.Q96,
— sqrtPriceX96) +
FullMath.mulDiv(otherTokenData.leftSlot(), sqrtPriceX96,
— FixedPoint96.Q96) ;

376 FullMath.mulDiv(tokenData.rightSlot(), FixedPoint96.Q96,
— sqrtPriceX96),

391 FullMath.mulDiv(
(tokenValue) * (DECIMALS - valueRatiol),
FixedPoint96.Q96,
sqrtPriceX96
)

402 FullMath.mulDiv (
(requiredValue - tokenValue) * (DECIMALS -
— valueRatiol),
FixedPoint96.Q96,
sqrtPricex96

415 FullMath.mulDiv(
(tokenValue) * (valueRatiol),
sqrtPricex96,
FixedPoint96.Q96
)

(... 426,1395, 1404, 1442,1617,1633)

PN

ABDK 81

CVF-188. FIXED

+ Category Suboptimal + Source CollateralTracker.sol

Description These two code fragments are very similar.

Recommendation Consider merging using the ternary operator.

389 bonus0O = SafeCast.toInt128(
390 int256 (

FullMath.mulDiv (

(tokenValue) * (DECIMALS - valueRatiol),
FixedPoint96.Q96,

sqrtPricex96

);

400 bonus® = SafeCast.toIntl28(
int256(

FullMath.mulDiv (

(requiredValue - tokenValue) * (DECIMALS - valueRatiol),
FixedPoint96.Q96,

sqrtPricex96

ABDK 82

413

420

424

430

CVF-189. FIXED

+ Category Suboptimal + Source CollateralTracker.sol

Description These two code fragments are very similar.

Recommendation Consider merging using the ternary operator.

bonusl = SafeCast.toInt128(
int256 (
FullMath.mulDiv (
(tokenValue) * (valueRatiol),
sqrtPricex96,
FixedPoint96.Q96

);

bonusl = SafeCast.toInt128(
int256 (
FullMath.mulDiv (
(requiredValue - tokenValue) * (valueRatiol),
sqrtPricex96,
FixedPoint96.Q96

ABDK

83

CVF-190. FIXED

+ Category Suboptimal + Source CollateralTracker.sol

Description This loses 1 bit of precision.

Recommendation Consider calculating upperRange and lowerRange separately so their
sum is exactly width * s_tickSpacing.

Client Comment At the time of this audit, we’ve decided to drop support for 1bps pools
(or any pool where tickSpacing is not defined by swapFee * 2 / 100). In the protocol’s
current state, we make assumptions about the tickSpacing that are broken by Tbps pools.
These are composed of a select few stablecoin pairs, and the vast majority of pairs satisfy
our assumptions. Support can be reenabled for those pools in the future once changes
are made to stop relying on those assumptions. This will not lose 1 bit of precision if our
assumption that the tickSpacing of a pool is divisible by 2 is met.

475 int24 range = (width * s tickSpacing) / 2;

CVF-191. FIXED

o Category Suboptimal + Source CollateralTracker.sol

Description This assignment is redundant, as the assigned value is never used.

477 int24 currNumRangesFromStrike = minNumRangesFromStrike;

ABDK 84

CVF-192. INFO

+ Category Procedural » Source CollateralTracker.sol

Recommendation Brackets around multiplication are redundant.

Client Comment Although these may be redundant, they assist readers in visualizing the
order of operations and increase readability of the code. Generally, it's always better to
err on the side of using parentheses for clarity rather than relying on an implicit order of

operations.
488 currNumRangesFromStrike = (2 * (strike - range - currentTick
<)) / range;
C_>
498 currNumRangesFromStrike = (2 * (currentTick - strike - range

<)) / range;

521 .toRightSlot((longAmounts.rightSlot() * fee) / DECIMALS 128)
.toLeftSlot((longAmounts.leftSlot() * fee) / DECIMALS 128);

CVF-193. FIXED

o Category Suboptimal + Source CollateralTracker.sol

Recommendation Here “10” should be a named constant.

Client Comment This code was removed.

510 minNumRangesFromStrike = minNumRangesFromStrike > 10 ? int24(10)
— minNumRangesFromStrike;

ABDK 85

521

562

754

810

CVF-194. INFO

+ Category Procedural » Source CollateralTracker.sol

Recommendation Brackets around multiplication are redundant.

Client Comment Although these may be redundant, they assist readers in visualizing the
order of operations and increase readability of the code. Generally, it's always better to
err on the side of using parentheses for clarity rather than relying on an implicit order of
operations

.toRightSlot((longAmounts.rightSlot() * fee) / DECIMALS 128)
.toLeftSlot((longAmounts.leftSlot() * fee) / DECIMALS 128);

CVF-195. FIXED

o Category Suboptimal ¢ Source CollateralTracker.sol
Recommendation Double type conversion is redundant. Just do: uint128 (_LinAMM())

FullMath.mulDiv (uint256 (int256(inAMM())), DECIMALS, totalBalance()
—)

CVF-196. FIXED

+ Category Procedural + Source CollateralTracker.sol

Description Here _msgSender() is guaranteed to be the owner, and owner is assumed to
be the pool, however such assumption may turn wrong in the future.

Recommendation Consider using "s_panopticPool” instead of “_msgSender()”.

Client Comment The function is no longer gated by the Panoptic Pool, and the corre-
sponding changes were made, so this is no longer an issue.

TransferHelper.safeTransferFrom(s underlyingToken, user, msgSender
— (), _assets);

TransferHelper.safeTransferFrom(s underlyingToken, msgSender(),
< _user, _assets);

PN

ABDK 86

CVF-197. FIXED

+ Category Procedural » Source CollateralTracker.sol

Recommendation This commented out code should be removed.

892

895

CVF-198. FIXED

+ Category Suboptimal + Source CollateralTracker.sol

Description The expression "balanceOf(optionOwner)” is calculated twice.

Recommendation Consider calculating once and reusing.

1126 sharesToBurn = sharesToBurn <= balanceOf(optionOwner)

1128 : balanceOf(optionOwner);

CVF-199. INFO

o Category Suboptimal ¢ Source CollateralTracker.sol

Recommendation "1” here should be a named constant or even enum constant.

Client Comment This is only called once now, so we are going to leave it as a number at
this time. We may refactor in the future.

1198 1,

ABDK 87

CVF-200. FIXED

+ Category Suboptimal + Source CollateralTracker.sol

Description The expression “tokenld.tokenType(index)” is calculated twice.

Recommendation Consider calculating once and reusing.
1286 bool requireToken® = (tokenId.tokenType(index) == 0) &&
— underlyingIsToken@;

bool requireTokenl = (tokenId.tokenType(index) == 1) &&
< underlyingIsTokenl;

CVF-201. FIXED

+ Category Suboptimal * Source CollateralTracker.sol

Description The expression “positionldList.length - offset” is calculated on every loop
iteration.

Recommendation Consider calculating once.

1339 for (uint256 i = 0; i < (positionIdList.length - offset);) {

CVF-202. FIXED

o Category Suboptimal * Source CollateralTracker.sol

Recommendation The variable “_poolUtilization” should be assigned only if “positionSize”
is not zero.

1344 (uintl28 positionSize, uintl28 poolUtilization) = (

ABDK 88

1391

1400

1405

1559

CVF-203. FIXED

+ Category Suboptimal + Source CollateralTracker.sol

Recommendation Explicit conversion to “int128” is redundant.

int256(sellCollateralRatio(int128(int64(utilization))))

int256(buyCollateralRatio(int128(int64(utilization))))

CVF-204. INFO

o Category Suboptimal + Source CollateralTracker.sol

Recommendation Should be “else revert” for completeness.

Client Comment Since this is a private function, it is only ever called internally. There will
never be a case where an input into isLong is not 0 or 1. As there is no efficiency to be
gained here, we will not be making this change.

}

CVF-205. FIXED

« Category Suboptimal * Source CollateralTracker.sol

Description One bit of precision is lost here.
Recommendation Consider calculating upperRange and lowerRange separately.

Client Comment At the time of this audit, we’ve decided to drop support for 1bps pools
(or any pool where tickSpacing is not defined by swapFee * 2 / 100). In the protocol’s
current state, we make assumptions about the tickSpacing that are broken by Tbps pools.
These are composed of a select few stablecoin pairs, and the vast majority of pairs satisfy
our assumptions. Support can be reenabled for those pools in the future once changes
are made to stop relying on those assumptions. This will not lose 1 bit of precision if our
assumption that the tickSpacing of a pool is divisible by 2 is met.

int24 oneSidedRange = (tokenId.width(index) * s tickSpacing) / 2;

PN

ABDK 89

1565

55

60

66

CVF-206. INFO

+ Category Procedural » Source CollateralTracker.sol

Recommendation Brackets are redundant around multiplication.

Client Comment Although these may be redundant, they assist readers in visualizing the
order of operations and increase readability of the code. Generally, it's always better to
err on the side of using parentheses for clarity rather than relying on an implicit order of
operations

required = required.toRightSlot((sellCollateral * int128(amountMoved
<)) / DECIMALS 128);

CVF-207. FIXED

+ Category Bad datatype * Source
SemiFungiblePositionManager.sol

Recommendation The type of this variable should be “IWETH9".

Client Comment This code was removed.

address private immutable WETH;

CVF-208. FIXED

o Category Suboptimal * Source
SemiFungiblePositionManager.sol

Description These two structures are identical.

Recommendation Consider merging into one.

struct MintCallbackData {

struct SwapCallbackData {

ABDK 90

CVF-209. FIXED

+ Category Bad datatype * Source
SemiFungiblePositionManager.sol

Recommendation The argument types should be “IlUniswapV3Pool” and “IWETH9” re-
spectively.

Client Comment The WETH argument was removed, and the interface is now used on
the factory parameter.

92 | constructor(address uniswapFactory, address WETH9)

CVF-210. INFO

+ Category Bad datatype * Source
SemiFungiblePositionManager.sol

Recommendation The type of these arguments should be “IERC20".

Client Comment We opted not to implement this in the interest of composability. The
values are clearly documented.

115 address token®,
address tokenl,

CVF-211. FIXED

o Category Suboptimal + Source
SemiFungiblePositionManager.sol

Recommendation These “unchecked” blocks are redundant as there are no operation
inside that could be checked.

Client Comment The logic of this function has significantly changed since the time of
audit, but there are no longer any unchecked blocks without a purpose there.

515 unchecked {
523 'unchecked {
544 | unchecked {

PN

ABDK 91

686

688

690

CVF-212. FIXED

+ Category Suboptimal * Source
SemiFungiblePositionManager.sol

Recommendation The value 10 should be a named constant.
Client Comment Named as DUST_THRESHOLD.

if ((amount® < 10) && (amountl < 10)) revert Errors.
< NotEnoughLiquidity();

CVF-213. FIXED

o Category Documentation + Source
SemiFungiblePositionManager.sol

Description The comment and the code don't match. The code just puts negated
amounts into “movedAmounts”.

C%
movedAmounts = movedAmounts.toRightSlot(-int128(amount0@.toUint128())
—).toLeftSlot(
-int128(amountl.toUint128())

);

ABDK 92

854

860

980

CVF-214. FIXED

+ Category Suboptimal * Source
SemiFungiblePositionManager.sol

Recommendation This could be simplified as: bool swapMint = movedO > 0 && amountO
1= 0 || lswapMint & moved1 > 0 && amount1 != 0;

Client Comment This logic has been changed sufficiently enough that the simplification
given is no longer relevant.

bool swapMint;

if ((moved® > 0) && (amount® !'= 0)) {
swapMint = true;

}

if (!swapMint && ((movedl > 0) && (amountl !'= 0))) {
swapMint = true;

}

CVF-215. INFO

+ Category Bad datatype + Source
SemiFungiblePositionManager.sol

Recommendation The type of this argument should be “lUniswapV3Pool".

Client Comment As there is no call to the pool made in this function, we do not need the
interface type here and we will not be implementing this change.

address univ3poolAddress,

ABDK 93

CVF-216. FIXED

+ Category Documentation » Source FeesCalc.sol

Description The semantics of keys and values in these mappings is unclear.

Recommendation Consider documenting.

68 \‘/mapping(uint256 => mapping(uint256 => mapping(uint256 => int256))) \
. < storage userOptions, |
\mapping(uint256 => uint256) storage userBalance, \

119 \/mapping(uint256 => mapping(uint256 => int256)) storage userOptions, \

348 \j/mapping(uint256 => mapping(uint256 => int256)) storage op, ‘

CVF-217. FIXED

« Category Procedural e Source FeesCalc.sol

Description UPPER_CASE is commonly used for constants.
Recommendation Consider using camelCase for arguments.

Client Comment We now reserve UPPER_CASE for constants.

71 [bool ALL PREMIA FLAG

CVF-218. FIXED

o Category Suboptimal + Source FeesCalc.sol

Description These variables are not used outside the loop.

Recommendation Consider moving their definitions into the loop.

74 |uint256 tokenId; 1
int256 positionPremia;
'uintl28 positionSize;

PN

ABDK 94

216

220

227

230

372

381

419

CVF-219. FIXED

+ Category Suboptimal * Source FeesCalc.sol

Description While the "muldiv” function is very efficient in general case, more efficient
approaches exist for specific cases, such as when the denominator is a power of two
known at compile time, or when the denominator is a compile-time constant. In the former
case, division could be replaced with shift and in the latter case the reciprocal of the
denominator could be precomputed.

Recommendation Consider using more efficient approaches when applicable.

FullMath.mulDiv (
ammFeesPerLiqToken0X128,
liquidityChunk.liquidity(),
FixedPoint128.Q128

FullMath.mulDiv (
ammFeesPerLiqToken1X128,
liquidityChunk.liquidity(),
FixedPoint128.Q128

FullMath.mulDiv (
uint128(feesToken.rightSlot() - op[index][0].
— rightSlot()),
effectivelLiquidityFactor,
DECIMALS

FullMath.mulDiv (
uint128(feesToken.leftSlot() - op[index][0O].
— leftSlot()),
effectivelLiquidityFactor,
DECIMALS

effectiveLiquidityFactor = FullMath.mulDiv(baseLiquidity, DECIMALS,
— baselLiquidity - amount);

ABDK 95

CVF-220. FIXED

+ Category Suboptimal * Source FeesCalc.sol

Description The expression "liquidityChunk.liquidity()” is calculated twice.

Recommendation Consider calculating once and reusing.
218 liquidityChunk.liquidity(),

229 liquidityChunk.liquidity(),

CVF-221. FIXED

o Category Suboptimal ¢ Source FeesCalc.sol

Description These values are needed in both branches of the conditional statement.

Recommendation Consider calculating in once place before the conditional statement.

373 uint128(feesToken.rightSlot() - op[index][0].rightSlot()
=),
382 uint128(feesToken.leftSlot() - op[index][0].leftSlot()),

390 feesO += intl28(feesToken.rightSlot() - op[index][0].rightSlot());
feesl += int128(feesToken.leftSlot() - op[index][0].leftSlot());

CVF-222. INFO

+ Category Bad datatype » Source PanopticMath.sol

Recommendation The argument type should be "IUniswapV3Pool”.

Client Comment We do not need to use an interface type, as we don’t directly call the
pool from here.

134 | function getPoolld(address univ3pool) external pure returns (uint80)
= {

I

ABDK 96

202

203

CVF-223. FIXED

+ Category Suboptimal + Source PanopticMath.sol

Description This function is not used.
Recommendation Consider removing it.

Client Comment This function is now used in PanopticFactory.

function numberOfLeadingHexZeros(address addr) external pure returns
— (uint256) {

CVF-224. FIXED

+ Category Suboptimal + Source PanopticMath.sol

Description Calculating a most significant bit index and then converting to a most signif-
icant nibble is suboptimal.

Recommendation Consider implementing a separate function to for most significant nib-
ble calculation.

return (159 - BitMath.mostSignificantBit(uint256(uint160(addr)))) /
— 4;

ABDK 97

238

276

278

CVF-225. FIXED

+ Category Suboptimal + Source PanopticMath.sol

Description While the "muldiv” function is very efficient in general case, more efficient
approaches exist for specific cases, such as when the denominator or numerator are
powers of 2 known at compile time.

Recommendation Consider implementing “shidiv” and “mulshr” functions.

Client Comment We’ve implemented MulDiv96 for this purpose, and transitioned some
unnecessary mulDivs that cannot overflow back to normal arithmetic.

if (tokenType == 0) return FullMath.mulDiv(balance, FixedPoint96.Q96
— , sqrtPriceAtTick);
if (tokenType == 1) return FullMath.mulDiv(balance, sqrtPriceAtTick,

< FixedPoint96.Q96);

notional = FullMath.mulDiv(contractSize, strikeX96,
— FixedPoint96.Q96).toUint128();

notional = FullMath.mulDiv(contractSize, FixedPoint96.Q96,
— strikexX96) .toUint128();

CVF-226. INFO

o Category Suboptimal * Source Math.sol

Recommendation Special handling of the "type(int256).min” value wouldn’t be necessary
if the return type would be “uint256".

Client Comment We are not implementing the requested change due to time constraints,
but we have removed that check as an overflow panic occurs if attempting to evaluate
-type(int256).min.

46 | if (x == type(int256).min) revert Errors.CoreMathError();

ABDK 98

58

67

80

CVF-227. FIXED

+ Category Suboptimal * Source Math.sol

Recommendation This could be simplified as: if ((downcastedInt = uint128(toDowncast))
I= toDowncast) ...

if (!((downcastedInt = uintl28(toDowncast)) == toDowncast)) revert
— Errors.CastingError();

CVF-228. FIXED

o Category Suboptimal ¢ Source Math.sol
Recommendation This could be simplified as: if ((result = int128(toCase)) < 0) revert ...;
if (toCast > uintl28(type(intl28).max)) revert Errors.CastingError()

=
return intl28(toCast);

CVF-229. INFO

+ Category Suboptimal » Source LiquidityChunk.sol

Description This argument is redundant as it is assumed to always be zero.
Recommendation Consider removing it.

Client Comment Self refers to the referenced liquidityChunk which is indeed assumed to
be zero. This is done so that we can use the LiquidityChunk library on uint256 as a type.

uint256 self,

ABDK 99

122

119

134

239

257

CVF-230. FIXED

+ Category Suboptimal + Source LiquidityChunk.sol

Recommendation This could be simplified as: return self + uint256(uint24(tickUpper)) «
208;

Client Comment This is incorrect, the simplification should be return self +
((uint256(uint24(tickUpper))) « 208). We have implemented the corrected version,

return self + ((uint256(int256(tickUpper)) & uint256(BITMASK INT24))
— << 208);

CVF-231. INFO

+ Category Suboptimal + Source Tokenld.sol

Recommendation Multiplication and modulo could be replace by bitwise operators.

Client Comment The Solidity compiler replaces arithmetic operations with their more
efficient bitwise counterparts whenever possible during the optimization process.

return uint256((self >> (80 + legIndex * 4)) % 8);
return uint256((self >> (80 + legIndex * 4 + 3)) % 2);
return self + (uint256(optionRatio % 8) << (80 + legIndex * 4));

return self + (uint256(numeraire % 2) << (80 + legIndex * 4 + 3));

ABDK 100

147

221

239

CVF-232. INFO

+ Category Bad datatype * Source Tokenld.sol

Recommendation The return type should be "bool”.

Client Comment Due to composability with the other functions in the codebase it is in
our best interests to keep the return data type as a uint256. As the return value is used
in math operations inside other functions. Bools cannot have math operations explicitly
applied to them.

function islLong(uint256 self, uint256 legIndex) internal pure
— returns (uint256) {

CVF-233. INFO

o Category Suboptimal * Source Tokenld.sol

Description There is no check to ensure that the pool slot of "self” is empty.

Recommendation Consider adding such a check or clearly explaining that the caller
should ensure that.

Client Comment This code is referenced within the addUniv3pool function. In all places
where this function is referenced, the self argument is passed in as a zero value. Thus,
there is no reason to add an empty slot check here.

return self + uint256(poolld);

CVF-234. INFO

o Category Suboptimal e Source Tokenld.sol

Description There is no check to ensure that the ratio slot to be written is empty.

Recommendation Consider adding such a check or clearly explaining that the caller
should ensure that.

Client Comment The code referenced here is from the function addOptionRatio. There
is no need to check that the option ratio bits being written to are zero, as any leg being
passed into this function have already been cleared, or are a new uninitalized leg.

return self + (uint256(optionRatio % 8) << (80 + legIndex * 4));

PN

ABDK 101

257

278

294

CVF-235. INFO

+ Category Suboptimal * Source Tokenld.sol

Description There is no check to ensure that the numeraire slot to be written is empty.

Recommendation Consider adding such a check or clearly explaining that the caller
should ensure that.

Client Comment The code referenced here is from the function addNumeraire. There is
no need to check that the numeraire bit being written to is zero, as any leg being passed
into this function have already been cleared, or are a new uninitalized leg.

return self + (uint256(numeraire % 2) << (80 + legIndex * 4 + 3));

CVF-236. INFO

o Category Suboptimal + Source Tokenld.sol

Description There is no check to ensure that the "isLong” flag to be written is empty.

Recommendation Consider adding such a check or clearly explaining that the caller
should ensure that.

Client Comment The code referenced here is from the function addlsLong. There is no
need to check that the isLong bit being written to is zero, as any leg being passed into
this function has already been cleared, or are a new uninitalized leg.

return self + (uint256(islLong % 2) << (96 + legIndex * 40));

CVF-237. INFO

o Category Suboptimal + Source Tokenld.sol

Description There is no check to ensure that the token type slot to be written is empty.

Recommendation Consider adding such a check or clearly explaining that the caller
should ensure that.

Client Comment The code referenced here is from the function addTokenType. There is
no need to check that the tokenType bit being written to is zero, as any leg being passed
into this function has already been cleared, or are a new uninitalized leg.

return self + (uint256(tokenType % 2) << (96 + legIndex * 40 + 1));

PN

ABDK 102

CVF-238. INFO

+ Category Suboptimal * Source Tokenld.sol

Description There is no check to ensure that the risk partner slot to be written is empty.

Recommendation Consider adding such a check or clearly explaining that the caller
should ensure that.

Client Comment The code referenced here is from the function addRiskPartner. There
is no need to check that the riskPartner bits being written to are zero, as any leg being
passed into this function has already been cleared, or are a new uninitalized leg.

310 ' return self + (uint256(riskPartner % 4) << (96 + legIndex * 40 + 2)
=);

CVF-239. INFO

» Category Suboptimal » Source Tokenld.sol

Description There is no check to ensure that the strike slot to be written is empty.

Recommendation Consider adding such a check or clearly explaining that the caller
should ensure that.

Client Comment The code referenced here is from the function addStrike. There is no
need to check that the strike bits being written to are zero, as any leg being passed into
this function have already been cleared, or are a new uninitalized leg.

326 return self + uint256((int256(strike) & BITMASK INT24) << (96 +
— legIndex * 40 + 4));

ABDK 103

343

395

401

397

406

CVF-240. INFO

+ Category Suboptimal * Source Tokenld.sol

Description There is no check to ensure that the width slot to be written is empty.

Recommendation Consider adding such a check or clearly explaining that the caller
should ensure that.

Client Comment The code referenced here is from the function addWidth. There is no
need to check that the width bits being written to are zero, as any leg being passed into
this function have already been cleared, or are a new uninitalized leg.

return self + (uint256(uint24(width) % 4096) << (96 + legIndex * 40
— + 28));

CVF-241. FIXED

» Category Suboptimal » Source Tokenld.sol

Description The expression "self.width(legindex)” is calculated twice.

Recommendation Consider calculating once and reusing.
int24 oneSidedRange = (self.width(legIndex) * tickSpacing) / 2;

(legLowerTick, legUpperTick) = self.width(legIndex) == MAX LEG WIDTH

CVF-242. FIXED

o Category Suboptimal ¢ Source Tokenld.sol

Description The expression “self.strike(legindex)” is calculated several times.

Recommendation Consider calculating once and reusing.

(self.strike(legIndex) - oneSidedRange <= TickMath.MIN TICK) ||
(self.strike(legIndex) + oneSidedRange >= TickMath.MAX TICK)

(self.strike(legIndex) - oneSidedRange, self.strike(legIndex) +
— oneSidedRange) ;

PN

ABDK 104

CVF-243. INFO

+ Category Procedural » Source Tokenld.sol

Recommendation Brackets around the first operation are redundant here.

Client Comment Although these may be redundant, they assist readers in visualizing the
order of operations and increase readability of the code. Generally, it's always better to
err on the side of using parentheses for clarity rather than relying on an implicit order of
operations

395 int24 oneSidedRange = (self.width(legIndex) * tickSpacing) / 2;

403 (TickMath.MIN TICK / tickSpacing) * tickSpacing,
(TickMath.MAX TICK / tickSpacing) * tickSpacing

CVF-244. FIXED

« Category Readability » Source Tokenld.sol

Recommendation Should be "else if".

436 return 4;

CVF-245. FIXED

o Category Suboptimal * Source Tokenld.sol

Recommendation This logical expression could be simplified.

492 I (
(self.tokenType(riskPartnerIndex) == self.tokenType(i) &&
(self.isLong(riskPartnerIndex) != self.islLong(i)))
) &&
I'((self.tokenType(riskPartnerIndex) != self.tokenType(i)) &&
(self.isLong(riskPartnerIndex) == self.isLong(i)))

ABDK 105

CVF-246. INFO

+ Category Suboptimal * Source Tokenld.sol

Description There is no validity check for "i".
Recommendation Consider reverting on an invalid "i” value.

Client Comment We have chosen not to revert here because we believe that the behavior
of returning an identical tokenld after trying to clear an out-of-range leg index makes
sense. If you request to clear index 5, for example, that index does not exist and the leg
is already “clear” so it should return the same tokenld.

661 | function clearLeg(uint256 self, uint256 i) internal pure returns (
— ulnt256) {

CVF-247. INFO

+ Category Readability * Source Tokenld.sol

Recommendation Should be "else if".

Client Comment We’ve organized it this way for readability purposes. We do not need
the extra else since it returns in every if statement, and thus will not move on to the next.

664 if (i == 1)
666 if (i == 2)

668 if (i == 3) return self & 0
— xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFOFFFFFFFFFFFFFFFFFFFFFFF;

ABDK 106

683

78

98

CVF-248. INFO

+ Category Suboptimal * Source Tokenld.sol

Description There are no range checks for these arguments.
Recommendation Consider adding appropriate checks.

Client Comment This is in reference to the function rollTokenlnfo, which has the src and
dst arguments passed into it via the constructRollTokenldWith function. As there are 4
legs indexed 0-3, there is already a definite range set when passing in src and dst.

uint256 src,
uint256 dst

CVF-249. FIXED

o Category Suboptimal e Source TickPriceFeelnfo.sol

Recommendation This could be simplified as: self + uint24(currentTick)

return self + uint256(int256(currentTick) & BITMASK INT24);

CVF-250. FIXED

o Category Suboptimal e Source TickPriceFeelnfo.sol
Recommendation This could be simplified as: self + (uint256(uint24(_swapFee)) « 184)

return self + ((uint256(int256(swapFee) & BITMASK INT24)) << 184);

ABDK 107

174

177

192

195

CVF-251. FIXED

+ Category Suboptimal » Source LeftRight.sol

Description The expressions "x.leftSlot()” and ”x.rightSlot()” are calculated twice.

Recommendation Consider calculating once and reusing.

uintl28 leftSum = x.leftSlot() + y.leftSlot();
uint128 rightSum = x.rightSlot() + y.rightSlot();

if ((leftSum < x.leftSlot()) || (rightSum < x.rightSlot()))

CVF-252. FIXED

o Category Suboptimal » Source LeftRight.sol

Description The expressions "x.leftSlot()” and ”x.rightSlot()” are calculated twice.

Recommendation Consider calculating once and reusing.

uintl28 leftSub = x.leftSlot() - y.leftSlot();
uintl28 rightSub = x.rightSlot() - y.rightSlot();

if ((leftSub > x.leftSlot()) || (rightSub > x.rightSlot()))

ABDK

108

CVF-253. FIXED
+ Category Suboptimal » Source LeftRight.sol

Recommendation This could be simplified as: unchecked { uint256 left = uint256 (x.left-
Slot ()) * uint256 (y.leftSlot ()); uint128 left128 = uint128 (left); require (Ieft128 == left); z =
uint256 (x.rightSlot ()) * uint256 (y.rightSlot ()); require (uint128 (z) == z); return z.toLeft-
Slot (left128): }

209 unchecked {
210 uintl28 leftMul = x.leftSlot() * y.leftSlot();
uintl28 rightMul = x.rightSlot() * y.rightSlot();

if ((x.leftSlot() != 0) && (leftMul / x.leftSlot()) !=y.
— leftSlot())
revert Errors.UnderOverFlow();
if ((x.rightSlot() !'= 0) && (rightMul / x.rightSlot()) !=vy.
— rightSlot())
revert Errors.UnderOverFlow();

return z.toRightSlot(rightMul).toLeftSlot(leftMul);

CVF-254. FIXED

o Category Suboptimal » Source LeftRight.sol

I

Description The expressions “x.leftSlot()”, "y.leftSlot()”, "x.rightSlot()”, and "y.rightSlot()’
are calculated twice.

Recommendation Consider calculating once and reusing.

210 (uint128 leftMul = x.leftSlot() * y.leftSlot();
uintl28 rightMul = x.rightSlot() * y.rightSlot();

213 if ((x.leftSlot() != 0) && (leftMul / x.leftSlot()) != y.leftSlot())

215 |if ((x.rightSlot() != 0) && (rightMul / x.rightSlot()) !=y.

)
— rightSlot())

ABDK 109

CVF-255. FIXED

+ Category Suboptimal » Source LeftRight.sol

Description The expressions "y.leftSlot()” and "y.rightSlot()” are calculated twice.

Recommendation Consider calculating once and reusing.

230 if ((y.leftSlot() == 0) || (y.rightSlot() == 0)) revert Errors.
— LeftRightInputError();

233 z.toRightSlot(x.rightSlot() / y.rightSlot()).toLeftSlot(
x.leftSlot() / y.leftSlot()

CVF-256. FIXED

o Category Suboptimal » Source LeftRight.sol

nyn

Recommendation This is not necessary overflow, as "y” could be zero.

247 if (x.leftSlot() == type(uintl28).max || x.rightSlot() == type(

< uintl128) .max)
revert Errors.UnderOverFlow();

ABDK

110

CVF-257. FIXED

+ Category Suboptimal » Source LeftRight.sol

Description The expressions "x.leftSlot()”, "y.leftSlot()”, "x.rightSlot()”, and "y.rightSlot()”
are calculated twice.

Recommendation Consider calculating once and reusing.

247 if (x.leftSlot() == type(uintl28).max || x.rightSlot() == type(
< uintl28).max)

250 intl128 leftSum = intl128(x.leftSlot()) + y.leftSlot();
intl28 rightSum = int128(x.rightSlot()) + y.rightSlot();

254 ((leftSum < int128(x.leftSlot())) && (y.leftSlot() > 0)) ||
((leftSum > int128(x.leftSlot())) && (y.leftSlot() < 0)) ||
((rightSum < int128(x.rightSlot())) & (y.rightSlot() > 0)) ||
((rightSum > int128(x.rightSlot())) && (y.rightSlot() < 0))

CVF-258. FIXED
+ Category Suboptimal » Source LeftRight.sol

Description The expressions "x.leftSlot()”, "y.leftSlot()”, "x.rightSlot()”, and "y.rightSlot()”
are calculated twice.

Recommendation Consider calculating once and reusing.

272 int128 leftSum = x.leftSlot() + y.leftSlot();
intl128 rightSum = x.rightSlot() + y.rightSlot();

((leftSum < x.leftSlot()) && (y.leftSlot() > 0))
((rightSum < x.rightSlot()) && (y.rightSlot() >
((leftSum > x.leftSlot()) && (y.leftSlot() < 0))
((rightSum > x.rightSlot()) && (y.rightSlot() <

276 | |
0)) ||
| |
))

0

ABDK 111

CVF-259. FIXED

+ Category Suboptimal » Source LeftRight.sol

Description The expressions "x.leftSlot()”, "y.leftSlot()”, "x.rightSlot()”, and "y.rightSlot()”
are calculated twice.

Recommendation Consider calculating once and reusing.

294 intl128 leftSub = x.leftSlot() - y.leftSlot();
intl28 rightSub = x.rightSlot() - y.rightSlot();

297 ((leftSub > x.leftSlot()) && (y.leftSlot() > 0)) ||
((rightSub > x.rightSlot()) && (y.rightSlot() > 0)) ||
((leftSub < x.leftSlot()) && (y.leftSlot() < 0)) ||

300 ((rightSub < x.rightSlot()) && (y.rightSlot() < 0))

0

CVF-260. FIXED

o Category Suboptimal » Source LeftRight.sol

Recommendation This could be simplified as: unchecked { iint256 left = iint256 (x.left-
Slot ()) * iint256 (y.leftSlot ()); iint128 left128 = iint128 (left); require (Ieft128 == left); z =
iint256 (x.rightSlot ()) *iint256 (y.rightSlot ()); require (iint128 (z) == z); return z.toLeftSlot
(left128); }

314 'unchecked {
intl28 leftMul = x.leftSlot() * y.leftSlot();
intl28 rightMul = x.rightSlot() * y.rightSlot();
if (

((x.leftSlot() !'= 0) && (leftMul / x.leftSlot()) !=y.
— leftSlot()) ||

((x.rightSlot() '= 0) && (rightMul / x.rightSlot()) !=vy.
— rightSlot())

320) revert Errors.UnderOverFlow();

return z.toRightSlot(rightMul).toLeftSlot(leftMul);

ABDK 12

CVF-261. FIXED

+ Category Suboptimal » Source LeftRight.sol

Description The expressions "x.leftSlot()”, "y.leftSlot()”, "x.rightSlot()”, and "y.rightSlot()”
are calculated twice.

Recommendation Consider calculating once and reusing.

315 int128 leftMul = x.leftSlot() * y.leftSlot();
intl28 rightMul = x.rightSlot() * y.rightSlot();

318 ((x.leftSlot() !'= 0) & (leftMul / x.leftSlot()) != y.leftSlot()
=) ||
((x.rightSlot() '= 0) && (rightMul / x.rightSlot()) !=vy.
— rightSlot())

CVF-262. FIXED

o Category Suboptimal » Source LeftRight.sol

Description The expressions "x.leftSlot()”, "y.leftSlot()”, "x.rightSlot()”, and "y.rightSlot()”
are calculated twice.

Recommendation Consider calculating once and reusing.

334 if ((y.leftSlot() == 0) || (y.rightSlot() == 0)) revert Errors.
< DivisionByZero();

336 (x.leftSlot() == type(intl28).min && y.leftSlot() == -1) ||
(x.rightSlot() == type(int128).min && y.rightSlot() == -1)
341 z.toLeftSlot(x.leftSlot() / y.leftSlot()).toRightSlot(

x.rightSlot() / y.rightSlot()

ABDK 13

CVF-263. FIXED

+ Category Suboptimal » Source LeftRight.sol

Recommendation This logic is overcomplicated. Just do a 256-bit division of 128-bit
integers, and then check, whether the result fits into 128 bits using: int128(x) == x

335 if (
(x.leftSlot() == type(intl28).min && y.leftSlot() == -1) ||
(x.rightSlot() == type(intl28).min && y.rightSlot() == -1)
) revert Errors.UnderOverFlow();

ABDK 114

CVF-264. INFO

+ Category Suboptimal * Source Errors.sol

Recommendation These errors could be made more useful by adding some parameters
to them.

Client Comment While a fair suggestion, we have opted not to refactor our errors at this
time. We will keep this in mind as we move forward .

12 error AccountNotSolvent();

18 error AlreadyOwner();

33 error CollateralTokenAlreadyInitialized();
46 error DuplicatedItems();

62 error FirstDepositTooSmall();

89 error InvalidInputAddress();

92 error InvalidInputParameters();
96 error InvalidPanopticPoolState();
99 error InvalidToken();
102 error InvalidTokenAddress();
109 error InvalidUserState();

112 error InvalidValue();

ABDK 115

ABDK

Consulting

About us

Established in 2016, is a leading service provider in the space of blockchain
development and audit. It has contributed to numerous blockchain projects, and co-
authored some widely known blockchain primitives like Poseidon hash function.

The ABDK Audit Team, led by Mikhail Vladimirov and Dmitry Khovratovich, has
conducted over 40 audits of blockchain projects in Solidity, Rust, Circom, C++,
JavaScript, and other languages.

Contact

X Email @ Website
dmitry@abdkconsulting.com abdk.consulting
W Twitter @ LinkedIn

twitter.com/ABDKconsulting linkedin.com/company/abdk-consulting

https://twitter.com/ABDKconsulting
https://abdk.consulting/
https://linkedin.com/company/abdk-consulting

	Changelog
	Introduction
	Project scope
	Methodology
	Our findings
	Critical Issues
	CVF-1. FIXED
	CVF-2. FIXED
	CVF-3. FIXED
	CVF-4. FIXED

	Major Issues
	CVF-5. FIXED
	CVF-6. INFO
	CVF-12. FIXED
	CVF-14. FIXED
	CVF-15. FIXED
	CVF-16. FIXED
	CVF-17. FIXED
	CVF-20. FIXED
	CVF-21. FIXED
	CVF-22. FIXED
	CVF-24. FIXED
	CVF-25. FIXED
	CVF-26. FIXED
	CVF-27. FIXED
	CVF-28. FIXED
	CVF-29. FIXED
	CVF-31. FIXED
	CVF-32. FIXED
	CVF-33. FIXED
	CVF-34. FIXED
	CVF-36. FIXED
	CVF-37. FIXED
	CVF-38. FIXED
	CVF-39. FIXED
	CVF-40. FIXED
	CVF-42. FIXED
	CVF-43. FIXED
	CVF-45. FIXED
	CVF-48. FIXED
	CVF-49. FIXED
	CVF-50. FIXED
	CVF-51. FIXED

	Moderate Issues
	CVF-9. INFO
	CVF-10. INFO
	CVF-11. INFO
	CVF-18. FIXED
	CVF-19. INFO
	CVF-23. INFO
	CVF-46. INFO
	CVF-47. FIXED
	CVF-53. FIXED
	CVF-54. INFO
	CVF-55. FIXED
	CVF-56. INFO
	CVF-57. INFO
	CVF-58. INFO
	CVF-59. INFO
	CVF-60. FIXED
	CVF-61. FIXED
	CVF-62. FIXED
	CVF-63. INFO
	CVF-64. FIXED
	CVF-65. FIXED
	CVF-66. INFO
	CVF-67. FIXED
	CVF-68. INFO
	CVF-69. INFO
	CVF-70. INFO
	CVF-71. FIXED
	CVF-72. INFO
	CVF-73. FIXED
	CVF-74. FIXED
	CVF-75. INFO
	CVF-76. INFO
	CVF-77. INFO
	CVF-78. FIXED
	CVF-79. INFO
	CVF-80. INFO
	CVF-81. INFO
	CVF-82. INFO
	CVF-83. INFO
	CVF-84. INFO
	CVF-85. INFO
	CVF-86. INFO
	CVF-87. INFO
	CVF-88. INFO
	CVF-89. INFO
	CVF-90. INFO
	CVF-91. INFO
	CVF-92. INFO
	CVF-93. INFO
	CVF-94. FIXED
	CVF-95. INFO
	CVF-96. INFO
	CVF-97. INFO
	CVF-98. INFO
	CVF-99. FIXED
	CVF-100. INFO
	CVF-101. INFO
	CVF-102. FIXED
	CVF-103. FIXED
	CVF-104. INFO
	CVF-105. FIXED
	CVF-106. FIXED
	CVF-107. INFO
	CVF-108. INFO
	CVF-111. FIXED

	Minor Issues
	CVF-109. INFO
	CVF-110. INFO
	CVF-118. INFO
	CVF-119. FIXED
	CVF-130. FIXED
	CVF-131. FIXED
	CVF-132. FIXED
	CVF-133. INFO
	CVF-134. INFO
	CVF-135. FIXED
	CVF-136. INFO
	CVF-137. FIXED
	CVF-138. FIXED
	CVF-139. FIXED
	CVF-140. INFO
	CVF-141. INFO
	CVF-142. INFO
	CVF-143. INFO
	CVF-144. FIXED
	CVF-145. FIXED
	CVF-146. FIXED
	CVF-147. INFO
	CVF-148. FIXED
	CVF-149. INFO
	CVF-150. FIXED
	CVF-151. FIXED
	CVF-152. INFO
	CVF-153. INFO
	CVF-154. INFO
	CVF-155. FIXED
	CVF-156. FIXED
	CVF-157. FIXED
	CVF-158. FIXED
	CVF-159. INFO
	CVF-160. FIXED
	CVF-161. INFO
	CVF-162. INFO
	CVF-163. FIXED
	CVF-164. INFO
	CVF-165. INFO
	CVF-166. INFO
	CVF-167. FIXED
	CVF-168. FIXED
	CVF-169. INFO
	CVF-170. FIXED
	CVF-171. FIXED
	CVF-172. INFO
	CVF-173. INFO
	CVF-174. FIXED
	CVF-175. INFO
	CVF-176. FIXED
	CVF-177. INFO
	CVF-178. FIXED
	CVF-179. INFO
	CVF-180. INFO
	CVF-181. FIXED
	CVF-182. FIXED
	CVF-183. FIXED
	CVF-184. INFO
	CVF-185. FIXED
	CVF-186. FIXED
	CVF-187. FIXED
	CVF-188. FIXED
	CVF-189. FIXED
	CVF-190. FIXED
	CVF-191. FIXED
	CVF-192. INFO
	CVF-193. FIXED
	CVF-194. INFO
	CVF-195. FIXED
	CVF-196. FIXED
	CVF-197. FIXED
	CVF-198. FIXED
	CVF-199. INFO
	CVF-200. FIXED
	CVF-201. FIXED
	CVF-202. FIXED
	CVF-203. FIXED
	CVF-204. INFO
	CVF-205. FIXED
	CVF-206. INFO
	CVF-207. FIXED
	CVF-208. FIXED
	CVF-209. FIXED
	CVF-210. INFO
	CVF-211. FIXED
	CVF-212. FIXED
	CVF-213. FIXED
	CVF-214. FIXED
	CVF-215. INFO
	CVF-216. FIXED
	CVF-217. FIXED
	CVF-218. FIXED
	CVF-219. FIXED
	CVF-220. FIXED
	CVF-221. FIXED
	CVF-222. INFO
	CVF-223. FIXED
	CVF-224. FIXED
	CVF-225. FIXED
	CVF-226. INFO
	CVF-227. FIXED
	CVF-228. FIXED
	CVF-229. INFO
	CVF-230. FIXED
	CVF-231. INFO
	CVF-232. INFO
	CVF-233. INFO
	CVF-234. INFO
	CVF-235. INFO
	CVF-236. INFO
	CVF-237. INFO
	CVF-238. INFO
	CVF-239. INFO
	CVF-240. INFO
	CVF-241. FIXED
	CVF-242. FIXED
	CVF-243. INFO
	CVF-244. FIXED
	CVF-245. FIXED
	CVF-246. INFO
	CVF-247. INFO
	CVF-248. INFO
	CVF-249. FIXED
	CVF-250. FIXED
	CVF-251. FIXED
	CVF-252. FIXED
	CVF-253. FIXED
	CVF-254. FIXED
	CVF-255. FIXED
	CVF-256. FIXED
	CVF-257. FIXED
	CVF-258. FIXED
	CVF-259. FIXED
	CVF-260. FIXED
	CVF-261. FIXED
	CVF-262. FIXED
	CVF-263. FIXED
	CVF-264. INFO

